11,815 research outputs found

    Equilibrium and off-equilibrium simulations of chiral-glass order in three-dimensional Heisenberg spin glasses

    Full text link
    Spin-glass and chiral-glass orderings in three-dimensional Heisenberg spin glasses are studied both by equilibrium and off-equilibrium Monte Carlo simulations. Fully isotropic model is found to exhibit a finite-temperature chiral-glass transition without the conventional spin-glass order. Although chirality is an Ising-like quantity from symmetry, universality class of the chiral-glass transition appears to be different from that of the standard Ising spin glass. In the off-equilibrium simulation, while the spin autocorrelation exhibits only an interrupted aging, the chirality autocorrelation persists to exhibit a pronounced aging effect reminisecnt of the one observed in the mean-field model. Effects of random magnetic anisotropy is also studied by the off-equilibrium simulation, in which asymptotic mixing of the spin and the chirality is observed.Comment: 15 pages including 8 figures, plain Tex, to appear in Computer Simulation Studies in Condensed Matter Physics XI, Springer, 199

    Ordering of the three-dimensional Heisenberg spin glass in magnetic fields

    Full text link
    Spin and chirality orderings of the three-dimensional Heisenberg spin glass are studied under magnetic fields in light of the recently developed spin-chirality decoupling-recoupling scenario. It is found by Monte Carlo simulations that the chiral-glass transition and the chiral-glass ordered state, which are essentially of the same character as their zero-field counterparts, occur under magnetic fields. Implication to experimental phase diagram is discussed.Comment: 5 pages, 3 figure

    Replica symmetry breaking transition of the weakly anisotropic Heisenberg spin glass in magnetic fields

    Full text link
    The spin and the chirality orderings of the three-dimensional Heisenberg spin glass with the weak random anisotropy are studied under applied magnetic fields by equilibrium Monte Carlo simulations. A replica symmetry breaking transition occurs in the chiral sector accompanied by the simultaneous spin-glass order. The ordering behavior differs significantly from that of the Ising SG, despite the similarity in the global symmetry. Our observation is consistent with the spin-chirality decoupling-recoupling scenario of a spin-glass transition.Comment: 4 pages, 4 figure

    Vortex glass transition in a frustrated 3D XY model with disorder

    Full text link
    The anisotropic frustrated three dimensional (3D) XY model with disorder in the coupling constants is simulated as a model of a point disordered superconductor in an applied magnetic field. From a finite size scaling analysis of the helicity modulus it is concluded that the data is consistent with a finite temperature transition with isotropic scaling and the correlation length exponent is found to be \nu=1.50+/-0.12, consistent with 3D gauge glass universality.Comment: For additional information, see http://www.tp.umu.se/~olsson/VortexGlass.htm

    Ordering of the Heisenberg spin glass in two dimensions

    Full text link
    The spin and the chirality orderings of the Heisenberg spin glass in two dimensions with the nearest-neighbor Gaussian coupling are investigated by equilibrium Monte Carlo simulations. Particular attention is paid to the behavior of the spin and the chirality correlation lengths. In order to observe the true asymptotic behavior, fairly large system size L\gsim 20 (L the linear dimension of the system) appears to be necessary. It is found that both the spin and the chirality order only at zero temperature. At high temperatures, the chiral correlation length stays shorter than spin correlation length, whereas at lower temperatures below the crossover temperature T_\times, the chiral correlation length exceeds the spin correlation length. The spin and the chirality correlation-length exponents are estimated above T_\times to be \nu_SG=0.9+-0.2 and \nu_CG=2.1+-0.3, respectively. These values are close to the previous estimates on the basis of the domain-wall-energy calculation. Discussion is given about the asymptotic critical behavior realized below T_\times.Comment: to appear in a special issue of J. Phys.

    Creep rupture of materials: insights from a fiber bundle model with relaxation

    Full text link
    I adapted a model recently introduced in the context of seismic phenomena, to study creep rupture of materials. It consists of linear elastic fibers that interact in an equal load sharing scheme, complemented with a local viscoelastic relaxation mechanism. The model correctly describes the three stages of the creep process, namely an initial Andrade regime of creep relaxation, an intermediate regime of rather constant creep rate, and a tertiary regime of accelerated creep towards final failure of the sample. In the tertiary regime creep rate follows the experimentally observed one over time-to-failure dependence. The time of minimum strain rate is systematically observed to be about 60-65 % of the time to failure, in accordance with experimental observations. In addition, burst size statistics of breaking events display a -3/2 power law for events close to the time of failure, and a steeper decay for the all-time distribution. Statistics of interevent times shows a tendency of the events to cluster temporarily. This behavior should be observable in acoustic emission experiments

    B meson light-cone wavefunctions in the heavy quark limit

    Get PDF
    We present a systematic study of the B meson light-cone wavefunctions in QCD in the heavy-quark limit. We construct model-independent formulae for the light-cone wavefunctions in terms of independent dynamical degrees of freedom, which exactly satisfy the QCD equations of motion and constraints from heavy-quark symmetry. The results demonstrate novel behaviors of longitudinal as well as transverse momentum distribution in the B mesons.Comment: 5 pages LaTeX, 1 style file. Talk presented at RADCOR/Loops and Legs 2002, Kloster Banz, Germany, September 8-13, 200

    A Maximum Mass-to-Size Ratio in Scalar-Tensor Theories of Gravity

    Full text link
    We derive a modified Buchdahl inequality for scalar-tensor theories of gravity. In general relativity, Buchdahl has shown that the maximum value of the mass-to-size ratio, 2M/R2M/R, is 8/9 for static and spherically symmetric stars under some physically reasonable assumptions. We formally apply Buchdahl's method to scalar-tensor theories and obtain theory-independent inequalities. After discussing the mass definition in scalar-tensor theories, these inequalities are related to a theory-dependent maximum mass-to-size ratio. We show that its value can exceed not only Buchdahl's limit, 8/9, but also unity, which we call {\it the black hole limit}, in contrast to general relativity. Next, we numerically examine the validity of the assumptions made in deriving the inequalities and the applicability of our analytic results. We find that the assumptions are mostly satisfied and that the mass-to-size ratio exceeds both Buchdahl's limit and the black hole limit. However, we also find that this ratio never exceeds Buchdahl's limit when we impose the further condition, ρ3p0\rho-3p\ge0, on the density, ρ\rho, and pressure, pp, of the matter.Comment: 23 pages, 13 figures and 1 tabl

    Ordering of the Heisenberg Spin Glass in High Dimensions

    Full text link
    Ordering of the Heisenberg spin glass with the nearest-neighbor Gaussian coupling is investigated by equilibrium Monte Carlo simulations in four and five dimensions. Ordering of the mean-field Heisenberg spin-glass is also studied for comparison. Particular attention is paid to the nature of the spin-glass and the chiral-glass orderings. Our numerical data suggest that, in five dimensions, the model exhibits a single spin-glass transition at a finite temperature, where the spin-glass order accompanying the simultaneous chiral-glass order sets in. In four dimensions, by contrast, the model exhibits a chiral-glass transition at a finite temperature, not accompanying the standard spin-glass order. The critical region associated with the chiral-glass transition, however, is very narrow, suggesting that dimension four is close to the marginal dimensionality.Comment: 18 pages, 12 figure
    corecore