547 research outputs found
Magnetic ground state of pyrochlore oxides close to metal-insulator boundary probed by muon spin rotation
Magnetism of ruthernium pyrochlore oxides A2Ru2O7 (A = Hg, Cd, Ca), whose
electronic properties within a localized ion picture are characterized by
non-degenerate t2g orbitals (Ru5+, 4d3) and thereby subject to geometrical
frustration, has been investigated by muon spin rotation/relaxation (muSR)
technique. The A cation (mostly divalent) was varied to examine the effect of
covalency (Hg > Cd > Ca) on their electronic property. In a sample with A = Hg
that exhibits a clear metal-insulator (MI) transition below >> 100 K (which is
associated with a weak structural transition), a nearly commensurate magnetic
order is observed to develop in accordance with the MI transition. Meanwhile,
in the case of A = Cd where the MI transition is suppressed to the level of
small anomaly in the resistivity, the local field distribution probed by muon
indicates emergence of a certain magnetic inhomogeneity below {\guillemotright}
30 K. Moreover, in Ca2Ru2O7 that remains metallic, we find a highly
inhomogeneous local magnetism below >>25 K that comes from randomly oriented Ru
moments and thus described as a "frozen spin liquid" state. The systematic
trend of increasing randomness and itinerant character with decreasing
covalency suggests close relationship between these two characters. As a
reference for the effect of orbital degeneracy and associated Jahn-Teller
instability, we examine a tetravalent ruthernium pyrochlore, Tl2Ru2O7 (Ru4+,
4d4), where the result of muSR indicates a non-magnetic ground state that is
consistent with the formation of the Haldane chains suggested by neutron
diffraction experiment.Comment: 12 pages, 13 figure
Hydrolysis of functional monomers in a single-bottle self-etching primer - Correlation of 13C NMR and TEM findings
Self-etching primers/adhesives that combine acidic methacrylate monomers with water in a single bottle are hydrolytically unstable and require refrigeration to extend their shelf-lives. This study tested the null hypothesis that one year of intermittent refrigeration of a 4-MET-containing simplified self-etching primer does not result in hydrolytic changes that are identifiable by transmission electron microscopy and 13C NMR spectroscopy. Human dentin was bonded with UniFil Bond immediately after being unpacked, or after one year of intermittent refrigeration at 4°C. Fresh and aged primers were analyzed by NMR for chemical changes. Ultrastructural observations indicated that there was an augmentation in etching capacity of the aged adhesive that was not accompanied by resin infiltration or effective polymerization. New NMR peaks detected from the aged ethanol-based primer confirmed that degradation occurred initially via esterification with ethanol, followed by hydrolysis of both ester groups in the 4-MET. Hydrolysis of functional methacrylate monomers occurs despite intermittent refrigeration.published_or_final_versio
Incommensurate spin correlations induced by magnetic Fe ions substituted into overdoped Bi1.75Pb0.35Sr1.90CuO6+z
Spin correlations in the overdoped region of Bi1.75Pb0.35Sr1.90CuO6+z have
been explored with Fe-doped single crystals characterized by neutron
scattering, muon-spin-rotation (muSR) spectroscopy, and magnetic susceptibility
measurements. Static incommensurate spin correlations induced by the Fe spins
are revealed by elastic neutron scattering. The resultant incommensurability
delta is unexpectedly large (~0.2 r.l.u.), as compared with delta ~ 1/8 in
overdoped superconductor La2-xSrxCuO4. Intriguingly, the large delta in this
overdoped region is close to the hole concentration p. This result is
reminiscent of the delta ~ p trend observed in underdoped La2-xSrxCuO4;
however, it is inconsistent with the saturation of delta in the latter compound
in the overdoped regime. While our findings in Fe-doped
Bi1.75Pb0.35Sr1.90CuO6+z support the commonality of incommensurate spin
correlations in high-Tc cuprate superconductors, they also suggest that the
magnetic response might be dominated by a distinct mechanism in the overdoped
region.Comment: 4 pages, 5 figures. Revision in introduction, discussion, and
conclusion
Direct observation of oxygen polarization in SrIrO by O -edge x-ray magnetic circular dichroism
X-ray absorption spectroscopy (XAS) and magnetic circular dichroism (XMCD)
measurements at the oxygen (O) -edge were performed to investigate the
magnetic polarization of ligand O atoms in the weak ferromagnetic (WFM) phase
of the Ir perovskite compound SrIrO. With the onset of the WFM phase
below K, XMCD signals corresponding to XAS peaks
respectively identified as originating from the magnetic moments of apical and
planar oxygen (O and O) in the IrO octahedra were
observed. The observation of magnetic moments at O sites is
consistent (except for the relative orientation) with that suggested by prior
muon spin rotation (SR) experiment in the non-collinear antiferromagnetic
(NC-AFM) phase below K. Assuming that the O
magnetic moment observed by SR is also responsible for the corresponding
XMCD signal, the magnetic moment of O is estimated to be consistent
with the previous SR result. Since the O XMCD signal is mainly
contributed by Ir 5 and orbitals which also hybridize with O, it is inferred that the relatively large O magnetic moment is
induced by Ir 5 orbitals. Moreover, the inversion of O
moments relative to Ir moments between the two magnetic phases revealed by XMCD
suggests the presence of competing magnetic interactions for O, with
which the ordering of O moments in the NC-AFM phase may be suppressed
to .Comment: 6 pages, 6 figure
Water concentration in self-etching primers affects their aggressiveness and bonding efficacy to dentin
Water is required to ionize acid resin monomers for demineralization of tooth substrates. We tested the null hypothesis that altering the water concentration in two-step self-etching primers has no effect on their aggressiveness and bonding efficacy to dentin. Five experimental self-etching primers were prepared with resin-water-ethanol volume ratios of 9-0-1, 8-1-1, 7-2-1, 5-4-1, and 3-6-1. They were applied to smear-layer-covered dentin, followed by a bonding resin and composite build-ups for microtensile bond testing and TEM examination of tracer penetration. Increasing water concentration from 0-60 vol% improved acidic monomer ionization that was manifested as increasing hybrid layer thickness. However, significantly higher bond strength was observed in the 7-2-1 group, with minimal nanoleakage in the corresponding hybrid layer. When self-etching primers are formulated, a balance must be achieved to provide sufficient water for adequate ionization of the acidic monomers, without lowering the resin concentration too much, to optimize their bonding efficacy to dentin.published_or_final_versio
- …