10,842 research outputs found

    Tracking the Tracker from its Passive Sonar ML-PDA Estimates

    Full text link
    Target motion analysis with wideband passive sonar has received much attention. Maximum likelihood probabilistic data-association (ML-PDA) represents an asymptotically efficient estimator for deterministic target motion, and is especially well-suited for low-observable targets; the results presented here apply to situations with higher signal to noise ratio as well, including of course the situation of a deterministic target observed via clean measurements without false alarms or missed detections. Here we study the inverse problem, namely, how to identify the observing platform (following a two-leg motion model) from the results of the target estimation process, i.e. the estimated target state and the Fisher information matrix, quantities we assume an eavesdropper might intercept. We tackle the problem and we present observability properties, with supporting simulation results.Comment: To appear in IEEE Transactions on Aerospace and Electronic System

    On the small-time behavior of subordinators

    Full text link
    We prove several results on the behavior near t=0 of YttY_t^{-t} for certain (0,)(0,\infty)-valued stochastic processes (Yt)t>0(Y_t)_{t>0}. In particular, we show for L\'{e}vy subordinators that the Pareto law on [1,)[1,\infty) is the only possible weak limit and provide necessary and sufficient conditions for the convergence. More generally, we also consider the weak convergence of tL(Yt)tL(Y_t) as t0t\to0 for a decreasing function LL that is slowly varying at zero. Various examples demonstrating the applicability of the results are presented.Comment: Published in at http://dx.doi.org/10.3150/11-BEJ363 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Quantum random walks without walking

    Full text link
    Quantum random walks have received much interest due to their non-intuitive dynamics, which may hold the key to a new generation of quantum algorithms. What remains a major challenge is a physical realization that is experimentally viable and not limited to special connectivity criteria. We present a scheme for walking on arbitrarily complex graphs, which can be realized using a variety of quantum systems such as a BEC trapped inside an optical lattice. This scheme is particularly elegant since the walker is not required to physically step between the nodes; only flipping coins is sufficient.Comment: 12 manuscript pages, 3 figure

    Conflict-Free Coloring Made Stronger

    Full text link
    In FOCS 2002, Even et al. showed that any set of nn discs in the plane can be Conflict-Free colored with a total of at most O(logn)O(\log n) colors. That is, it can be colored with O(logn)O(\log n) colors such that for any (covered) point pp there is some disc whose color is distinct from all other colors of discs containing pp. They also showed that this bound is asymptotically tight. In this paper we prove the following stronger results: \begin{enumerate} \item [(i)] Any set of nn discs in the plane can be colored with a total of at most O(klogn)O(k \log n) colors such that (a) for any point pp that is covered by at least kk discs, there are at least kk distinct discs each of which is colored by a color distinct from all other discs containing pp and (b) for any point pp covered by at most kk discs, all discs covering pp are colored distinctively. We call such a coloring a {\em kk-Strong Conflict-Free} coloring. We extend this result to pseudo-discs and arbitrary regions with linear union-complexity. \item [(ii)] More generally, for families of nn simple closed Jordan regions with union-complexity bounded by O(n1+α)O(n^{1+\alpha}), we prove that there exists a kk-Strong Conflict-Free coloring with at most O(knα)O(k n^\alpha) colors. \item [(iii)] We prove that any set of nn axis-parallel rectangles can be kk-Strong Conflict-Free colored with at most O(klog2n)O(k \log^2 n) colors. \item [(iv)] We provide a general framework for kk-Strong Conflict-Free coloring arbitrary hypergraphs. This framework relates the notion of kk-Strong Conflict-Free coloring and the recently studied notion of kk-colorful coloring. \end{enumerate} All of our proofs are constructive. That is, there exist polynomial time algorithms for computing such colorings

    Computing by nowhere increasing complexity

    Full text link
    A cellular automaton is presented whose governing rule is that the Kolmogorov complexity of a cell's neighborhood may not increase when the cell's present value is substituted for its future value. Using an approximation of this two-dimensional Kolmogorov complexity the underlying automaton is shown to be capable of simulating logic circuits. It is also shown to capture trianry logic described by a quandle, a non-associative algebraic structure. A similar automaton whose rule permits at times the increase of a cell's neighborhood complexity is shown to produce animated entities which can be used as information carriers akin to gliders in Conway's game of life

    High-power 1.3 µm superluminescent diode

    Get PDF
    Superluminescent diodes with high output power (10 mW at 175 mA), wide spectral width (28 nm), low spectral modulation depth (<15%), wide frequency modulation bandwidth (570 MHz), and high single-mode fiber coupling efficiency (40%) are reported. The structure is based on a buried crescent laser structure with an antireflection coating and a "short-circuit" absorber to suppress lasing
    corecore