605 research outputs found
Repeat optical satellite images reveal widespread and long term decrease in land-terminating glacier speeds
By matching of repeat optical satellite images it is now possible to investigate glacier dynamics within large regions of the world and also between regions to improve knowledge about glacier dynamics in space and time. In this study we investigate whether the negative glacier mass balance seen over large parts of the world has caused the glaciers to change their speeds. The studied regions are Pamir, Caucasus, Penny Ice Cap, Alaska Range and Patagonia. In addition we derive speed changes for Karakoram, a region assumed to have positive mass balance and that contains many surge-type glaciers. We find that the mapped glaciers in the five regions with negative mass balance have over the last decades decreased their velocity at an average rate per decade of: 43 % in the Pamir, 8 % in the Caucasus, 25 % on Penny Ice Cap, 11 % in the Alaska Range and 20 % in Patagonia. Glaciers in Karakoram have generally increased their speeds, but surging glaciers and glaciers with flow instabilities are most prominent in this area. Therefore the calculated average speed change is not representative for this area
Geochemical characterization of supraglacial debris via in situ and optical remote sensing methods: a case study in Khumbu Himalaya, Nepal
Surface glacier debris samples and field spectra were collected from the ablation zones of Nepal Himalaya Ngozumpa and Khumbu glaciers in November and December 2009. Geochemical and mineral compositions of supraglacial debris were determined by X-ray diffraction and X-ray fluorescence spectroscopy. This composition data was used as ground truth in evaluating field spectra and satellite supraglacial debris composition and mapping methods. Satellite remote sensing methods for characterizing glacial surface debris include visible to thermal infrared hyper- and multispectral reflectance and emission signature identification, semi-quantitative mineral abundance indicies and spectral image composites. Satellite derived supraglacial debris mineral maps displayed the predominance of layered silicates, hydroxyl-bearing and calcite minerals on Khumbu Himalayan glaciers. Supraglacial mineral maps compared with satellite thermal data revealed correlations between glacier surface composition and glacier surface temperature. Glacier velocity displacement fields and shortwave, thermal infrared false color composites indicated the magnitude of mass flux at glacier confluences. The supraglacial debris mapping methods presented in this study can be used on a broader scale to improve, supplement and potentially reduce errors associated with glacier debris radiative property, composition, areal extent and mass flux quantifications
Cold-regions river flow observed from space
Knowledge of water-surface velocities in rivers is useful for understanding a wide range of lotic processes and systems, such as water and ice fluxes and forces, mixing, solute and sediment transport, bed and bank stability, aquatic and riparian ecology, and extreme hydrologic events. In cold regions, river-ice break up and the associated downstream transport of ice debris is often the most important hydrological event of the year, producing flood levels that commonly exceed those for the open-water period and dramatic consequences for river infrastructure and ecology. Quantification of river surface velocity and currents has relied mostly on very scarce in situ measurements or particle tracking in laboratory models, with few attempts to cover entire river reaches. Accurate and complete surface-velocity fields on rivers have rarely been produced. Here, we use river-ice debris as an index of surface water velocity, and track it over a time period of about one minute, which is the typical time lapse between the two or more images that form a stereo data set in spaceborne, alongtrack optical-stereo mapping. In this way, we measure and visualize for the first time, the almost complete surface velocity field of a river. Examples are used from approximately 80 km and 40 km long reaches of the St. Lawrence and Mackenzie rivers, respectively. The methodology and results will be valuable to a number of disciplines requiring detailed information about river flow, such as hydraulics, hydrology, river ecology and natural-hazard management
Co-registration and bias corrections of satellite elevation data sets for quantifying glacier thickness change
There are an increasing number of digital elevation models (DEMs) available worldwide for deriving elevation differences over time, including vertical changes on glaciers. Most of these DEMs are heavily post-processed or merged, so that physical error modelling becomes difficult and statistical error modelling is required instead. We propose a three-step methodological framework for assessing and correcting DEMs to quantify glacier elevation changes: (i) remove DEM shifts, (ii) check for elevation-dependent biases, and (iii) check for higher-order, sensor-specific biases. A simple, analytic and robust method to co-register elevation data is presented in regions where stable terrain is either plentiful (case study New Zealand) or limited (case study Svalbard). The method is demonstrated using the three global elevation data sets available to date, SRTM, ICESat and the ASTER GDEM, and with automatically generated DEMs from satellite stereo instruments of ASTER and SPOT5-HRS. After 3-D co-registration, significant biases related to elevation were found in some of the stereoscopic DEMs. Biases related to the satellite acquisition geometry (along/cross track) were detected at two frequencies in the automatically generated ASTER DEMs. The higher frequency bias seems to be related to satellite jitter, most apparent in the back-looking pass of the satellite. The origins of the more significant lower frequency bias is uncertain. ICESat-derived elevations are found to be the most consistent globally available elevation data set available so far. Before performing regional-scale glacier elevation change studies or mosaicking DEMs from multiple individual tiles (e.g. ASTER GDEM), we recommend to co-register all elevation data to ICESat as a global vertical reference system
Inventory and changes of rock glacier creep speeds in Ile Alatau and Kungöy Ala-Too, northern Tien Shan, since the 1950s
This research has been supported by the European Research Council (ICEMASS (grant no. 320816)) and the European Space Agency (grant nos. 40001161196/15/I-NB, 4000123681/18/I-NB, 4000109873/14/I-NB, 4000127593/19/I-NS, and 4000127656/19/NL/FF/gp). This work was funded by the ESA projects GlobPermafrost (40001161196/15/I-NB), Permafrost_CCI (4000123681/18/I-NB), and Glaciers_CCI (4000109873/14/I-NB, 4000127593/19/I-NS) and the ESA EarthExplorer10 Mission Advisory Group (4000127656/19/NL/FF/gp) as well as by the European Research Council under the European Union's Seventh Framework Programme (FP/2007-2013)/ERC grant agreement no. 320816.Spatio-temporal patterns related to the viscous creep in perennially frozen sediments of rock glaciers in cold mountains have rarely been studied outside the densely populated European Alps. This study investigates the spatial and temporal variability of rock glacier movement in the Ile Alatau and Kungöy Ala-Too mountain ranges, northern Tien Shan, a region with particularly large and fast rock glaciers. Over the study region of more than 3000 km2, an inventory of slope movements was constructed using a large number of radar interferograms and high-resolution optical imagery. The inventory includes more than 900 landforms, of which around 550 were interpreted as rock glaciers. Out of the active rock glaciers inventoried, 45 are characterized by a rate of motion exceeding 100 cm/a. From these fast rock glaciers we selected six (Gorodetzky, Morenny, Archaly, Ordzhonikidze, Karakoram, and Kugalan Tash) and studied them in more detail using offset tracking between repeat aerial images and historical and modern high-resolution optical satellite data. Two of these rock glaciers showed a steady increase in decadal surface velocities from the 1950s onwards, with speeds being roughly 2 to 4 times higher in recent years compared to the 1950s and 1960s. Three rock glaciers showed similar accelerations over the last 1 to 2 decades but also phases of increased speeds in the 1960s. This development indicates a possible significant increase in current sediment and ice fluxes through rock glaciers and implies that their material transport in the region might gain geomorphodynamic importance relative to material transport by glaciers, assuming the latter decreases together with the regional glacier shrinkage. The study demonstrates how air and satellite image archives are exploited to construct one of the longest decennial times series of rock glacier speeds currently available. Our results are in line with findings from Europe about rock glacier speeds increasing with atmospheric warming and underline local variability of such an overall response.Publisher PDFPeer reviewe
Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry
In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across an moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2mm compared to control distributions derived from dry sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological
process interpretation and analysis
Three different glacier surges at a spot: What satellites observe and what not
In the Karakoram, dozens of glacier surges occurred in the past 2 decades, making the region a global hotspot. Detailed analyses of dense time series from optical and radar satellite images revealed a wide range of surge behaviour in this region: from slow advances longer than a decade at low flow velocities to short, pulse-like advances over 1 or 2 years with high velocities. In this study, we present an analysis of three currently surging glaciers in the central Karakoram: North and South Chongtar Glaciers and an unnamed glacier referred to as NN9. All three glaciers flow towards the same small region but differ strongly in surge behaviour. A full suite of satellites (e.g. Landsat, Sentinel-1 and 2, Planet, TerraSAR-X, ICESat-2) and digital elevation models (DEMs) from different sources (e.g. Shuttle Radar Topography Mission, SRTM; Satellite Pour l'Observation de la Terre, SPOT; High Mountain Asia DEM, HMA DEM) are used to (a) obtain comprehensive information about the evolution of the surges from 2000 to 2021 and (b) to compare and evaluate capabilities and limitations of the different satellite sensors for monitoring surges of relatively small glaciers in steep terrain. A strongly contrasting evolution of advance rates and flow velocities is found, though the elevation change pattern is more similar. For example, South Chongtar Glacier had short-lived advance rates above 10 yr-1, velocities up to 30 d-1, and surface elevations increasing by 170 m. In contrast, the neighbouring and 3-times-smaller North Chongtar Glacier had a slow and near-linear increase in advance rates (up to 500 yr-1), flow velocities below 1 d-1 and elevation increases up to 100 m. The even smaller glacier NN9 changed from a slow advance to a full surge within a year, reaching advance rates higher than 1 yr-1. It seems that, despite a similar climatic setting, different surge mechanisms are at play, and a transition from one mechanism to another can occur during a single surge. The sensor inter-comparison revealed a high agreement across sensors for deriving flow velocities, but limitations are found on small and narrow glaciers in steep terrain, in particular for Sentinel-1. All investigated DEMs have the required accuracy to clearly show the volume changes during the surges, and elevations from ICESat-2 ATL03 data fit neatly to the other DEMs. We conclude that the available satellite data allow for a comprehensive observation of glacier surges from space when combining different sensors to determine the temporal evolution of length, elevation and velocity changes
ERUPTIVE ACTIVITY AND GLACIER CHANGES AT POPOCATEPETL VOLCANO, MEXICO
The aim of the present work is the study of the eruptive activity-glacier interaction and, the effects on glacier evolution over 1994-2001. The glacial regime, morphological changes and infuence of the eruptive processes were determined in order to establish the eruptive activity-glacier interaction. Mass balances were carried out by means of photogrammetric techniques in order to determine the infuence of eruptive activity on the glacial regime. DEM comparisons allowed establishing spatial and temporal changes of area and volume of the glacier. Morphological changes were determined by photointerpretation, so the data obtained by this procedure and the data derived from DTM comparison were correlated to eruptive activity. The mass balance, and morphological changes at Popocatépetl volcano over 1994-2001 suggest that the eruptive activity accelerated the glacial retreat and cause its fragmentation.
Keywords: Popocatépetl Volcano, volcano-ice interactions, digital photogrammetry, glacial retreat.
El presente trabajo, se centra en el estudio del impacto de la actividad eruptiva del volcán Popocatépetl en el área glaciar durante el período 1994-2001. Para determinar el efecto de la actividad eruptiva en el régimen glaciar, se realizaron balances de masa empleando técnicas fotogramétricas, mediante la generación de modelos digitales de elevación (MDE). La comparación de MDEs permitió establecer los cambios glaciares en términos de área y volumen tanto temporales como espaciales. Así mismo, los cambios morfológicos del área glaciar fueron determinados con base en la fotointerpretación, de manera que los datos obtenidos por este procedimiento y los obtenidos mediante la comparación de los MDE se relacionaron con la actividad eruptiva a lo largo del periodo de estudio, estableciendo así la relación entre los fenómenos volcánicos y los cambios glaciares. Los resultados estimados del balance de masa del área glaciar y los cambios morfológicos observados a lo largo de 1994-2001 en el volcán Popocatépetl, permiten establecer que la actividad eruptiva aceleró el proceso de retroceso glaciar que tenía lugar desde principios del siglo XX y que culminó con la fragmentación del área glaciar.
Palabras clave: volcán Popocatépetl, interacción actividad eruptiva-glaciares, fotogrametría digital, retroceso glaciar.
 
- …