315 research outputs found
Hole-Doping Effects on a Two-dimensional Kondo Insulator
We study the effects of hole doping on the two-dimensional Heisenberg-Kondo
model around the quantum critical point, where the spin liquid phase (Kondo
insulator) and the magnetically ordered phase are separated via a second-order
phase transition. By means of the self-consistent Born approximation within the
bond operator formalism as well as the standard spin wave theory, we discuss
dynamical properties of a doped hole. It is clarified that a quasi-particle
state stabilized in the spin liquid phase is gradually obscured as the system
approaches the quantum critical point. This is also the case for the
magnetically ordered phase. We argue the similarity and the difference between
these two cases.Comment: 8 pages, 14 figure
Kondo lattice model with a direct exchange interaction between localized moments
We study the Kondo lattice model with a direct antiferromagnetic exchange
interaction between localized moments. Ferromagnetically long-range ordered
state coexisting with the Kondo screening shows a continuous quantum phase
transition to the Kondo singlet state. We obtain the value of the critical
point where the magnetizations of the localized moments and the conduction
electrons vanish. The magnetization curves yield a universal critical exponent
independent of the filling factors and the strength of the interaction between
localized moments. It is shown that the direct exchange interaction between
localized moments introduces another phase transition from an antiferromagnetic
ordering to a ferromagnetic ordering for small Kondo exchange interaction. We
also explain the local minimum of the Kondo temperature in recent experiments.Comment: 6 pages, 5 figures, final versio
Strong-Coupling Expansions for Multiparticle Excitations: Continuum and Bound States
We present a new linked cluster expansion for calculating properties of
multiparticle excitation spectra to high orders. We use it to obtain the
two-particle spectra for systems of coupled spin-half dimers. We find that even
for weakly coupled dimers the spectrum is very rich, consisting of many bound
states. The number of bound states depends on both geometry of coupling and
frustration. Many of the bound states can only be seen by going to sufficiently
high orders in the perturbation theory, showing the extended character of the
pair-attraction.Comment: 4 pages, 5 figure
Magnetism of a tetrahedral cluster spin-chain
We discuss the magnetic properties of a dimerized and completely frustrated
tetrahedral spin-1/2 chain. Using a combination of exact diagonalization and
bond-operator theory the quantum phase diagram is shown to incorporate a
singlet-product, a dimer, and a Haldane phase. In addition we consider one-,
and two-triplet excitations in the dimer phase and evaluate the magnetic Raman
cross section which is found to be strongly renormalized by the presence of a
two-triplet bound state. The link to a novel tellurate materials is clarified.Comment: 8 pages, 8 figure
Hole Dispersions for Antiferromagnetic Spin-1/2 Two-Leg Ladders by Self-Similar Continuous Unitary Transformations
The hole-doped antiferromagnetic spin-1/2 two-leg ladder is an important
model system for the high- superconductors based on cuprates. Using the
technique of self-similar continuous unitary transformations we derive
effective Hamiltonians for the charge motion in these ladders. The key
advantage of this technique is that it provides effective models explicitly in
the thermodynamic limit. A real space restriction of the generator of the
transformation allows us to explore the experimentally relevant parameter
space. From the effective Hamiltonians we calculate the dispersions for single
holes. Further calculations will enable the calculation of the interaction of
two holes so that a handle of Cooper pair formation is within reach.Comment: 16 pages, 26 figure
Dynamical structure factors of two-leg spin ladder systems
We investigate dynamical properties of two-leg spin ladder systems.
In a strong coupling region, an isolated mode appears in the lowest excited
states, while in a weak coupling region, an isolated mode is reduced and the
lowest excited states become a lower bound of the excitation continuum. We find
in the system with equal intrachain and interchain couplings that due to a
cyclic four-spin interaction, the distribution of the weights for the dynamical
structure factor and characteristics of the lowest excited states are strongly
influenced. The dynamical properties of two systems proposed for are also discussed.Comment: 5 pages, 6 figure
Thermodynamics of the half-filled Kondo lattice model around the atomic limit
We present a perturbation theory for studying thermodynamic properties of the
Kondo spin liquid phase of the half-filled Kondo lattice model. The grand
partition function is derived to calculate chemical potential, spin and charge
susceptibilities and specific heat. The treatment is applicable to the model
with strong couplings in any dimensions (one, two and three dimensions). The
chemical potential equals zero at any temperatures, satisfying the requirement
of the particle-hole symmetry. Thermally activated behaviors of the
spin(charge) susceptibility due to the spin(quasiparticle) gap can be seen and
the two-peak structure of the specific heat is obtained. The same treatment to
the periodic Anderson model around atomic limit is also briefly discussed.Comment: 5 pages, 3 figures, to appear in Phys. Rev.
Dynamical structure factors of the magnetization-plateau state in the bond-alternating spin chain with a next-nearest-neighbor interaction
We calculate the dynamical structure factors of the magnetization-plateau
state in the bond-alternating spin chain with a next-nearest-neighbor
interaction. The results show characteristic behaviors depending on the
next-nearest-neighbor interaction and the bond-alternation .
We discuss the lower excited states in comparison with the exact excitation
spectrums of an effective Hamiltonian. From the finite size effects,
characteristics of the lowest excited states are investigated. The
dispersionless mode of the lowest excitation appears in adequate sets of
and , indicating that the lowest excitation is localized
spatially and forms an isolated mode below the excitation continuum. We further
calculate the static structure factors. The largest intensity is located at
for small in fixed . With increasing , the
wavenumber of the largest intensity shifts towards , taking the
incommensurate value.Comment: to appear in Phys. Rev. B (2001
Secondary structure of Ac-Ala-LysH polyalanine peptides (=5,10,15) in vacuo: Helical or not?
The polyalanine-based peptide series Ac-Ala_n-LysH+ (n=5-20) is a prime
example that a secondary structure motif which is well-known from the solution
phase (here: helices) can be formed in vacuo. We here revisit this conclusion
for n=5,10,15, using density-functional theory (van der Waals corrected
generalized gradient approximation), and gas-phase infrared vibrational
spectroscopy. For the longer molecules (n=10,15) \alpha-helical models provide
good qualitative agreement (theory vs. experiment) already in the harmonic
approximation. For n=5, the lowest energy conformer is not a simple helix, but
competes closely with \alpha-helical motifs at 300K. Close agreement between
infrared spectra from experiment and ab initio molecular dynamics (including
anharmonic effects) supports our findings.Comment: 4 pages, 4 figures, Submitted to JPC Letter
- …