153 research outputs found

    MicroRNAs and Gene Regulatory Networks Related to Cleft Lip and Palate

    Get PDF
    Cleft lip and palate is one of the most common congenital birth defects and has a complex etiology. Either genetic or environmental factors, or both, are involved at various degrees, and the type and severity of clefts vary. One of the longstanding questions is how environmental factors lead to craniofacial developmental anomalies. Recent studies highlight non-coding RNAs as potential epigenetic regulators in cleft lip and palate. In this review, we will discuss microRNAs, a type of small non-coding RNAs that can simultaneously regulate expression of many downstream target genes, as a causative mechanism of cleft lip and palate in humans and mice

    Craniofacial Bone Anomalies Related to Cholesterol Synthesis Defects

    Get PDF
    DHCR7 and SC5D are enzymes crucial for cholesterol biosynthesis, and mutations in their genes are associated with developmental disorders, which are characterized by craniofacial deformities. We have recently reported that a loss of either Dhcr7 or Sc5d results in a failure in osteoblast differentiation. However, it remains unclear to what extent a loss of function in either DHCR7 or SC5D affects craniofacial skeletal formation. Here, using micro computed tomography (μCT), we found that the bone phenotype differs in Dhcr

    MicroRNA-124-3p Plays a Crucial Role in Cleft Palate Induced by Retinoic Acid

    Get PDF
    Cleft lip with/without cleft palate (CL/P) is one of the most common congenital birth defects, showing the complexity of both genetic and environmental contributions [e.g., maternal exposure to alcohol, cigarette, and retinoic acid (RA)] in humans. Recent studies suggest that epigenetic factors, including microRNAs (miRs), are altered by various environmental factors. In this study, to investigate whether and how miRs are involved in cleft palate (CP) induced by excessive intake of all-trans RA (atRA), we evaluated top 10 candidate miRs, which were selected through our bioinformatic analyses, in mouse embryonic palatal mesenchymal (MEPM) cells as well as in mouse embryos treated with atRA. Among them, overexpression of miR-27a-3p, miR-27b-3p, and miR-124-3p resulted in the significant reduction of cell proliferation in MEPM cells through the downregulation of CP-associated genes. Notably, we found that excessive atRA upregulated the expression of miR-124-3p, but not of miR-27a-3p and miR-27b-3p, in both in vivo and in vitro. Importantly, treatment with a specific inhibitor for miR-124-3p restored decreased cell proliferation through the normalization of target gene expression in atRA-treated MEPM cells and atRA-exposed mouse embryos, resulting in the rescue of CP in mice. Taken together, our results indicate that atRA causes CP through the induction of miR-124-3p in mice

    Mechanisms involved in an increment of multimodal excitability of medullary and upper cervical dorsal horn neurons following cutaneous capsaicin treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to evaluate mechanisms that may underlie the sensitization of trigeminal spinal subnucleus caudalis (Vc; the medullary dorsal horn) and upper cervical spinal cord (C1-C2) nociceptive neurons to heat, cold and mechanical stimuli following topical capsaicin treatment of the facial skin, nocifensive behaviors as well as phosphorylation of extracellular regulated-kinase (pERK) in Vc and C1-C2 neurons were studied in rats.</p> <p>Results</p> <p>Compared to vehicle application, capsaicin application to the lateral facial skin produced 1 hour later a flare in the skin, and also induced significantly greater nocifensive behaviors to heat, cold or mechanical stimulus of the lateral facial skin. The intrathecal (i.t.) injection of the MEK inhibitor PD98059 markedly attenuated the nocifensive behaviors to these stimuli in capsaicin-treated rats. Moreover, the number of pERK-like immunoreactive (pERK-LI) cells in Vc and C1-C2 was significantly larger following the heat, cold and mechanical stimuli in capsaicin-treated rats compared with vehicle-treated rats. The number of pERK-LI cells gradually increased following progressive increases in the heat or mechanical stimulus intensity and following progressive decrease in the cold stimulus. The ERK phosphorylation in Vc and C1-C2 neurons was strongly inhibited after subcutaneous injection of the capsaicin antagonist capsazepine in capsaicin-treated rats.</p> <p>Conclusion</p> <p>The present findings revealed that capsaicin treatment of the lateral facial skin causes an enhancement of ERK phosphorylation in Vc and C1-C2 neurons as well as induces nocifensive behavior to heat, cold and mechanical simulation of the capsaicin-treated skin. The findings suggest that TRPV1 receptor mechanisms in rat facial skin influence nociceptive responses to noxious cutaneous thermal and mechanical stimuli by inducing neuroplastic changes in Vc and C1-C2 neurons that involve in the MAP kinase cascade.</p

    Clinical Performance of a Salivary Amylase Activity Monitor During Hemodialysis Treatment

    Get PDF
    The hemodialysis procedure is thought to be a physical stressor in the majority of hemodialyzed patients. Previous studies suggest that elevated salivary amylase level may correlate with increased plasma norepinephrine level under psychological and physical stress conditions. In this study, we investigated biological stress reactivity during hemodialysis treatment using salivary amylase activity as a biomarker. Seven patients (male/female = 5/2, age: 67.7+/−5.9 years) who had been receiving regular 4 h hemodialysis were recruited. Salivary amylase activity was measured using a portable analyzer every hour during the hemodialysis session. Salivary amylase activity was shown to be relatively stable and constant throughout hemodialysis, whereas there were significant changes in systolic blood pressure and pulse rate associated with blood volume reduction. Our results show that hemodialysis treatment per se dose not affect salivary amylase activity

    TGF-β mediated FGF10 signaling in cranial neural crest cells controls development of myogenic progenitor cells through tissue–tissue interactions during tongue morphogenesis

    Get PDF
    AbstractSkeletal muscles are formed from two cell lineages, myogenic and fibroblastic. Mesoderm-derived myogenic progenitors form muscle cells whereas fibroblastic cells give rise to the supportive connective tissue of skeletal muscles, such as the tendons and perimysium. It remains unknown how myogenic and fibroblastic cell–cell interactions affect cell fate determination and the organization of skeletal muscle. In the present study, we investigated the functional significance of cell–cell interactions in regulating skeletal muscle development. Our study shows that cranial neural crest (CNC) cells give rise to the fibroblastic cells of the tongue skeletal muscle in mice. Loss of Tgfbr2 in CNC cells (Wnt1-Cre;Tgfbr2flox/flox) results in microglossia with reduced Scleraxis and Fgf10 expression as well as decreased myogenic cell proliferation, reduced cell number and disorganized tongue muscles. Furthermore, TGF-β2 beads induced the expression of Scleraxis in tongue explant cultures. The addition of FGF10 rescued the muscle cell number in Wnt1-Cre;Tgfbr2flox/flox mice. Thus, TGF-β induced FGF10 signaling has a critical function in regulating tissue–tissue interaction during tongue skeletal muscle development

    Potassium channels as a potential therapeutic target for trigeminal neuropathic and inflammatory pain

    Get PDF
    Previous studies in several different trigeminal nerve injury/inflammation models indicated that the hyperexcitability of primary afferent neurons contributes to the pain pathway underlying mechanical allodynia. Although multiple types of voltage-gated ion channels are associated with neuronal hyperexcitability, voltage-gated K+ channels (Kv) are one of the important physiological regulators of membrane potentials in excitable tissues, including nociceptive sensory neurons. Since the opening of K+ channels leads to hyperpolarization of cell membrane and a consequent decrease in cell excitability, several Kv channels have been proposed as potential target candidates for pain therapy. In this review, we focus on common changes measured in the Kv channels of several different trigeminal neuropathic/inflammatory pain animal models, particularly the relationship between changes in Kv channels and the excitability of trigeminal ganglion (TRG) neurons. We also discuss the potential of Kv channel openers as therapeutic agents for trigeminal neuropathic/inflammatory pain, such as mechanical allodynia

    Single-Cell Multiomics Decodes Regulatory Programs for Mouse Secondary Palate Development

    Get PDF
    Perturbations in gene regulation during palatogenesis can lead to cleft palate, which is among the most common congenital birth defects. Here, we perform single-cell multiome sequencing and profile chromatin accessibility and gene expression simultaneously within the same cells (n = 36,154) isolated from mouse secondary palate across embryonic days (E) 12.5, E13.5, E14.0, and E14.5. We construct five trajectories representing continuous differentiation of cranial neural crest-derived multipotent cells into distinct lineages. By linking open chromatin signals to gene expression changes, we characterize the underlying lineage-determining transcription factors. In silico perturbation analysis identifies transcription factors SHOX2 and MEOX2 as important regulators of the development of the anterior and posterior palate, respectively. In conclusion, our study charts epigenetic and transcriptional dynamics in palatogenesis, serving as a valuable resource for further cleft palate research

    Alteration of primary afferent activity following inferior alveolar nerve transection in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In order to evaluate the neural mechanisms underlying the abnormal facial pain that may develop following regeneration of the injured inferior alveolar nerve (IAN), the properties of the IAN innervated in the mental region were analyzed.</p> <p>Results</p> <p>Fluorogold (FG) injection into the mental region 14 days after IAN transection showed massive labeling of trigeminal ganglion (TG). The escape threshold to mechanical stimulation of the mental skin was significantly lower (i.e. mechanical allodynia) at 11-14 days after IAN transection than before surgery. The background activity, mechanically evoked responses and afterdischarges of IAN Aδ-fibers were significantly higher in IAN-transected rats than naive. The small/medium diameter TG neurons showed an increase in both tetrodotoxin (TTX)-resistant (TTX-R) and -sensitive (TTX-S) sodium currents (<it>I</it><sub>Na</sub>) and decrease in total potassium current, transient current (<it>I</it><sub>A</sub>) and sustained current (<it>I</it><sub>K</sub>) in IAN-transected rats. The amplitude, overshoot amplitude and number of action potentials evoked by the depolarizing pulses after 1 μM TTX administration in TG neurons were significantly higher, whereas the threshold current to elicit spikes was smaller in IAN-transected rats than naive. Resting membrane potential was significantly smaller in IAN-transected rats than that of naive.</p> <p>Conclusions</p> <p>These data suggest that the increase in both TTX-S <it>I</it><sub>Na </sub>and TTX-R <it>I</it><sub>Na </sub>and the decrease in <it>I</it><sub>A </sub>and <it>I</it><sub>k </sub>in small/medium TG neurons in IAN-transected rats are involved in the activation of spike generation, resulting in hyperexcitability of Aδ-IAN fibers innervating the mental region after IAN transection.</p
    corecore