156 research outputs found

    Comparative Studies of Detecting Abusive Language on Twitter

    Full text link
    The context-dependent nature of online aggression makes annotating large collections of data extremely difficult. Previously studied datasets in abusive language detection have been insufficient in size to efficiently train deep learning models. Recently, Hate and Abusive Speech on Twitter, a dataset much greater in size and reliability, has been released. However, this dataset has not been comprehensively studied to its potential. In this paper, we conduct the first comparative study of various learning models on Hate and Abusive Speech on Twitter, and discuss the possibility of using additional features and context data for improvements. Experimental results show that bidirectional GRU networks trained on word-level features, with Latent Topic Clustering modules, is the most accurate model scoring 0.805 F1.Comment: ALW2: 2nd Workshop on Abusive Language Online to be held at EMNLP 2018 (Brussels, Belgium), October 31st, 201

    Erythropoietin Modulates the Structure of Bone Morphogenetic Protein 2–Engineered Cranial Bone

    Full text link
    The ideally engineered bone should have similar structural and functional properties to the native tissue. Although structural integrity is critical for functional bone regeneration, we know less about modulating the structural properties of the engineered bone elicited by bone morphogenetic protein (BMP) than efficacy and safety. Erythropoietin (Epo), a primary erythropoietic hormone, has been used to augment blood transfusion in orthopedic surgery. However, the effects of Epo on bone regeneration are not well known. Here, we determined the role of Epo in BMP2-induced bone regeneration using a cranial defect model. Epo administration improved the quality of BMP2-induced bone and more closely resembled natural cranial bone with a higher bone volume (BV) fraction and lower marrow fraction when compared with BMP2 treatment alone. Epo increased red blood cells (RBCs) in peripheral blood and also increased hematopoietic and mesenchymal stem cell (MSC) populations in bone marrow. Consistent with our previous work, Epo increased osteoclastogenesis both in vitro and in vivo. Results from a metatarsal organ culture assay suggested that Epo-promoted osteoclastogenesis contributed to angiogenesis because angiogenesis was blunted when osteoclastogenesis was blocked by alendronate (ALN) or osteoprotegerin (OPG). Earlier calcification of BMP2-induced temporary chondroid tissue was observed in the Epo+BMP group compared to BMP2 alone. We conclude that Epo significantly enhanced the outcomes of BMP2-induced cranial bone regeneration in part through its actions on osteoclastogenesis and angiogenesis.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/98479/1/ten%2Etea%2E2011%2E0742.pd

    Deleterious effects in reproduction and developmental immunity elicited by pulmonary iron oxide nanoparticles

    Get PDF
    With the extensive application of iron oxide nanoparticles (FeNPs), attention about their potential risks to human health is also rapidly raising, particularly in sensitive subgroups such as pregnant women and babies. In this study, we a single instilled intratracheally FeNPs (1, 2, and 4 mg/kg) to the male and female parent mice, mated, then assessed reproductive toxicity according to the modified OECD TG 421. During the pre-mating period (14 days), two female parent mice died at 4 mg/kg dose, and the body weight gain dose-dependently decreased in male and female parent mice exposed to FeNPs. Additionally, iron accumulation and the enhanced expression of MHC class II molecules were observed in the ovary and the testis of parent mice exposed to the highest dose of FeNPs, and the total sex ratio (male/female) of the offspring mice increased in the groups exposed to FeNPs. Following, we a single instilled intratracheally to their offspring mice with the same doses and evaluated the immunotoxic response on day 28. The increased mortality and significant hematological- and biochemical- changes were observed in offspring mice exposed at 4 mg/kg dose, especially in female mice. More interestingly, balance of the immune response was shifted to a different direction in male and female offspring mice. Taken together, we conclude that the NOAEL for reproductive and developmental toxicity of FeNPs may be lower than 2 mg/kg, and that female mice may show more sensitive response to FeNPs exposure than male mice. Furthermore, we suggest that further studies are necessary to identify causes of both the alteration in sex ratio of offspring mice and different immune response in male and female offspring mice.

    Biological Responses to Diesel Exhaust Particles (DEPs) Depend on the Physicochemical Properties of the DEPs

    Get PDF
    Diesel exhaust particles (DEPs) are the main components of ambient particulate materials, including polyaromatic hydrocarbons (PAHs), n-PAHs, heavy metals, and gaseous materials. Many epidemiological, clinical, and toxicological studies have shown that ambient particles, including DEPs, are associated with respiratory disorders, such as asthma, allergic rhinitis, and lung cancer. However, the relationship between the biological response to DEPs and their chemical composition remains unclear. In this study, we investigated the physicochemical properties of DEPs before toxicological studies, and then administered a single intratracheal instillation of DEPs to mice. The mice were then killed 1, 7, 14 and 28 days after DEP exposure to observe the biological responses induced by DEPs over time. Our findings suggest that DEPs engulfed into cells induced a Th2-type inflammatory response followed by DNA damage, whereas DEPs not engulfed into cells induced a Th1-type inflammatory response. Further, the physicochemical properties, including surface charge, particle size, and chemical composition, of DEPs play a crucial role in determining the biological responses to DEPs. Consequently, we suggest that the biological response to DEPs depend on cell-particle interaction and the physicochemical properties of the particles

    Biological Toxicity and Inflammatory Response of Semi-Single-Walled Carbon Nanotubes

    Get PDF
    The toxicological studies on carbon nanotubes (CNTs) have been urgently needed from the emerging diverse applications of CNTs. Physicochemical properties such as shape, diameter, conductance, surface charge and surface chemistry of CNTs gained during manufacturing processes play a key role in the toxicity. In this study, we separated the semi-conductive components of SWCNTs (semi-SWCNTs) and evaluated the toxicity on days 1, 7, 14 and 28 after intratracheal instillation in order to determine the role of conductance. Exposure to semi-SWCNTs significantly increased the growth of mice and significantly decreased the relative ratio of brain weight to body weight. Recruitment of monocytes into the bloodstream increased in a time-dependent manner, and significant hematological changes were observed 28 days after exposure. In the bronchoalveolar lavage (BAL) fluid, secretion of Th2-type cytokines, particularly IL-10, was more predominant than Th1-type cytokines, and expression of regulated on activation normal T cell expressed and secreted (RANTES), p53, transforming growth factor (TGF)-β, and inducible nitric oxide synthase (iNOS) increased in a time-dependent manner. Fibrotic histopathological changes peaked on day 7 and decreased 14 days after exposure. Expression of cyclooxygenase-2 (COX-2), mesothelin, and phosphorylated signal transducer and activator of transcription 3 (pSTAT3) also peaked on day 7, while that of TGF-β peaked on days 7 and 14. Secretion of histamine in BAL fluid decreased in a time-dependent manner. Consequently, we suggest that the brain is the target organ of semi-SWCNTs brought into the lung, and conductance as well as length may be critical factors affecting the intensity and duration of the inflammatory response following SWCNT exposure

    Kondo-like behaviors in magnetic and thermal properties of single crystal Tm5Si2Ge2

    Full text link
    We grew the single crystal of stoichiometric Tm5Si2.0Ge2.0 using a Bridgeman method and performed XRD, EDS, magnetization, ac and dc magnetic susceptibilities, specific heat, electrical resistivity and XPS experiments. It crystallizes in orthorhombic Sm5Ge4-type structure. The mean valence of Tm ions in Tm5Si2.0Ge2.0 is almost trivalent. The 4f states is split by the crystalline electric field. The ground state exhibits the long range antiferromagnetic order with the ferromagnetically coupled magnetic moments in the ac plane below 8.01 K, while the exited states exhibit the reduction of magnetic moment and magnetic entropy and -log T-behaviors observed in Kondo materials.Comment: 8 pages, 13 figure

    Development of Field Pollutant Load Estimation Module and Linkage of QUAL2E with Watershed-Scale L-THIA ACN Model

    Get PDF
    The Long Term Hydrologic Impact Assessment (L-THIA) model was previously improved by incorporating direct runoff lag time and baseflow. However, the improved model, called the L-THIA asymptotic curve number (ACN) model cannot simulate pollutant loads from a watershed or instream water quality. In this study, a module for calculating pollutant loads from fields and through stream networks was developed, and the L-THIA ACN model was combined with the QUAL2E model (The enhanced stream water quality model) to predict instream water quality at a watershed scale. The new model (L-THIA ACN-WQ) was applied to two watersheds within the Korean total maximum daily loads management system. To evaluate the model, simulated results of total nitrogen (TN) and total phosphorus (TP) were compared with observed water quality data collected at eight-day intervals. Between simulated and observed data for TN pollutant loads in Dalcheon A watershed, the R2 and Nash–Sutcliffe efficiency (NSE) were 0.81 and 0.79, respectively, and those for TP were 0.79 and 0.78, respectively. In the Pyungchang A watershed, the R2 and NSE were 0.66 and 0.64, respectively, for TN and both statistics were 0.66 for TP, indicating that model performed satisfactorily for both watersheds. Thus, the L-THIA ACN-WQ model can accurately simulate streamflow, instream pollutant loads, and water quality
    corecore