16 research outputs found

    Tracking CNS and systemic sources of oxidative stress during the course of chronic neuroinflammation

    Get PDF
    The functional dynamics and cellular sources of oxidative stress are central to understanding MS pathogenesis but remain elusive, due to the lack of appropriate detection methods. Here we employ NAD(P)H fluorescence lifetime imaging to detect functional NADPH oxidases (NOX enzymes) in vivo to identify inflammatory monocytes, activated microglia, and astrocytes expressing NOX1 as major cellular sources of oxidative stress in the central nervous system of mice affected by experimental autoimmune encephalomyelitis (EAE). This directly affects neuronal function in vivo, indicated by sustained elevated neuronal calcium. The systemic involvement of oxidative stress is mirrored by overactivation of NOX enzymes in peripheral CD11b(+) cells in later phases of both MS and EAE. This effect is antagonized by systemic intake of the NOX inhibitor and anti-oxidant epigallocatechin-3-gallate. Together, this persistent hyper-activation of oxidative enzymes suggests an "oxidative stress memory" both in the periphery and CNS compartments, in chronic neuroinflammation

    Effect of central and peripheral cone- and rod-specific stimulation on the pupillary light reflex

    No full text
    PURPOSE: To assess the effect of central and peripheral stimulation on the pupillary light reflex. The aim was to detect possible differences between cone- and rod-driven reactions. METHODS: Relative maximal pupil constriction amplitude (relMCA) and latency to constriction onset (latency) to cone- and rod-specific stimuli of 30 healthy participants (24 ± 5 years (standard deviation)) were measured using chromatic pupil campimetry. Cone- and rod-specific stimuli had different intensities and wavelengths according to the Standards in Pupillography. Five filled circles with radii of 3°, 5°, 10°, 20° and 40° and four rings with a constant outer radius of 40° and inner radii of 3°, 5°, 10° and 20° were used as stimuli. RESULTS: For cone-and rod-specific stimuli, relMCA increased with the stimulus area for both, circles and rings. However, increasing the area of a cone-specific ring by minimizing its inner radius with constant outer radius increased relMCA significantly stronger than the same did for a rod-specific ring. For cones and rods, a circle stimulus with a radius of 40° created a lower relMCA than the summation of the relMCAs to the corresponding ring and circle stimuli which combined create a 40° circle-stimulus. Latency was longer for rods than for cones. It decreased with increasing stimulus area for circle stimuli while it stayed nearly constant with increasing ring stimulus area for cone- and rod-specific stimuli. CONCLUSION: The effect of central stimulation on relMCA is more dominant for cone-specific stimuli than for rod-specific stimuli while latency dynamics are similar for both conditions. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10792-021-02132-1

    Oscillatory Potentials in Achromatopsia as a Tool for Understanding Cone Retinal Functions

    No full text
    Achromatopsia (ACHM) is an inherited autosomal recessive disease lacking cone photoreceptors functions. In this study, we characterize the time-frequency representation of the full-field electroretinogram (ffERG) component oscillatory potentials (OPs), to investigate the connections between photoreceptors and the inner retinal network using ACHM as a model. Time-frequency characterization of OPs was extracted from 52 controls and 41 achromat individuals. The stimulation via ffERG was delivered under dark-adaptation (DA, 3.0 and 10.0 cd·s·m−2) to assess mixed rod-cone responses. The ffERG signal was subsequently analyzed using a continuous complex Morlet transform. Time-frequency maps of both DA conditions show the characterization of OPs, disclosing in both groups two distinct time-frequency windows (~70–100 Hz and >100 Hz) within 50 ms. Our main result indicates a significant cluster (p < 0.05) in both conditions of reduced relative power (dB) in ACHM people compared to controls, mainly at the time-frequency window >100 Hz. These results suggest that the strongly reduced but not absent activity of OPs above 100 Hz is mostly driven by cones and only in small part by rods. Thus, the lack of cone modulation of OPs gives important insights into interactions between photoreceptors and the inner retinal network and can be used as a biomarker for monitoring cone connection to the inner retina

    Oscillatory Potentials in Achromatopsia as a Tool for Understanding Cone Retinal Functions

    No full text
    Achromatopsia (ACHM) is an inherited autosomal recessive disease lacking cone photoreceptors functions. In this study, we characterize the time-frequency representation of the full-field electroretinogram (ffERG) component oscillatory potentials (OPs), to investigate the connections between photoreceptors and the inner retinal network using ACHM as a model. Time-frequency characterization of OPs was extracted from 52 controls and 41 achromat individuals. The stimulation via ffERG was delivered under dark-adaptation (DA, 3.0 and 10.0 cd·s·m(−2)) to assess mixed rod-cone responses. The ffERG signal was subsequently analyzed using a continuous complex Morlet transform. Time-frequency maps of both DA conditions show the characterization of OPs, disclosing in both groups two distinct time-frequency windows (~70–100 Hz and >100 Hz) within 50 ms. Our main result indicates a significant cluster (p 100 Hz. These results suggest that the strongly reduced but not absent activity of OPs above 100 Hz is mostly driven by cones and only in small part by rods. Thus, the lack of cone modulation of OPs gives important insights into interactions between photoreceptors and the inner retinal network and can be used as a biomarker for monitoring cone connection to the inner retina

    How lesions at different locations along the visual pathway influence pupillary reactions to chromatic stimuli

    No full text
    Purpose!#!To examine systematically how prechiasmal, chiasmal, and postchiasmal lesions along the visual pathway affect the respective pupillary responses to specific local monochromatic stimuli.!##!Methods!#!Chromatic pupil campimetry (CPC) was performed in three patient groups (10 subjects with status after anterior ischemic optic neuropathy, 6 with chiasmal lesions, and 12 with optic tract or occipital lobe lesions (tumor, ischemia)) using red, low-intensity red, and blue local stimuli within the central 30° visual field. Affected areas - as determined by visual field defects revealed using conventional static perimetry - were compared with non-affected areas. Outcome parameters were the relative maximal constriction amplitude (relMCA) and the latency to constriction onset of the pupillary responses.!##!Results!#!A statistically significant relMCA reduction was observed in the affected areas of postchiasmal lesions with red (p = 0.004) and low-intensity red stimulation (p = 0.001). RelMCA reduction in the affected areas seemed more pronounced for low-intensity red stimulation (46.5% mean reduction compared to non-affected areas; 36% for red stimulation), however statistically not significant. In prechiasmal lesions, a statistically significant latency prolongation could be demonstrated in the affected areas with low-intensity red stimulation (p = 0.015).!##!Conclusion!#!Our results indicate that the choice of stimulus characteristics is relevant in detecting defects in the pupillary pathway of impairment along the visual pathway, favoring red stimuli of low intensity over blue stimuli. Such knowledge opens the door for further fundamental research in pupillary pathways and is important for future clinical application of pupillography in neuro-ophthalmologic patients
    corecore