54 research outputs found

    Rationale and design of a randomized trial to test the safety and non‑inferiority of canagliflozin in patients with diabetes with chronic heart failure : the CANDLE trial

    Get PDF
    Background: Because type 2 diabetes mellitus is associated strongly with an increased risk of cardiovascular diseases, the number of patients with diabetes with chronic heart failure is increasing steadily. However, clinical evidence of therapeutic strategies in such patients is still lacking. A recent randomized, placebo-controlled trial in patients with type 2 diabetes with high cardiovascular risk demonstrated that the SGLT2 inhibitor, empagliflozin, reduced the incidence of hospitalization for heart failure. Because SGLT2 inhibitors cause a reduction in body weight and blood pressure in addition to improving glycemic control, they have the potential to exert beneficial effects on the clinical pathophysiology of heart failure. The aim of the ongoing CANDLE trial is to test the safety and non-inferiority of canagliflozin, another SGLT2 inhibitor, compared with glimepiride, a sulfonylurea agent, in patients with type 2 diabetes mellitus and chronic heart failure. Methods: A total of 250 patients with type 2 diabetes who are drug-naïve or taking any anti-diabetic agents and suffering from chronic heart failure with a New York Heart Association classification I to III will be randomized centrally into either canagliflozin or glimepiride groups (1: 1) using the dynamic allocation method stratified by age (<65, ≥65 year), HbA1c level (<6.5, ≥6.5 %), and left ventricular ejection fraction (<40, ≥40 %). After randomization, all the participants will be given the add-on study drug for 24 weeks in addition to their background therapy. The primary endpoint is the percentage change from baseline in NT-proBNP after 24 weeks of treatment. The key secondary endpoints after 24 weeks of treatment are the change from baseline in glycemic control, blood pressure, body weight, lipid profile, quality of life score related to heart failure, and cardiac and renal function. Discussion: The CANDLE trial is the first to assess the safety and non-inferiority of canagliflozin in comparison with glimepiride in patients with type 2 diabetes with chronic heart failure. This trial has the potential to evaluate the clinical safety and efficacy of canagliflozin on heart failure

    Recent Progress in Electrochemical Biosensors for Glycoproteins

    No full text
    This review provides an overview of recent progress in the development of electrochemical biosensors for glycoproteins. Electrochemical glycoprotein sensors are constructed by combining metal and carbon electrodes with glycoprotein-selective binding elements including antibodies, lectin, phenylboronic acid and molecularly imprinted polymers. A recent trend in the preparation of glycoprotein sensors is the successful use of nanomaterials such as graphene, carbon nanotube, and metal nanoparticles. These nanomaterials are extremely useful for improving the sensitivity of glycoprotein sensors. This review focuses mainly on the protocols for the preparation of glycoprotein sensors and the materials used. Recent improvements in glycoprotein sensors are discussed by grouping the sensors into several categories based on the materials used as recognition elements

    Recent Progress in Electrochemical HbA1c Sensors: A Review

    No full text
    This article reviews recent progress made in the development of electrochemical glycated hemoglobin (HbA1c) sensors for the diagnosis and management of diabetes mellitus. Electrochemical HbA1c sensors are divided into two categories based on the detection protocol of the sensors. The first type of sensor directly detects HbA1c by binding HbA1c on the surface of an electrode through bio-affinity of antibody and boronic acids, followed by an appropriate mode of signal transduction. In the second type of sensor, HbA1c is indirectly determined by detecting a digestion product of HbA1c, fructosyl valine (FV). Thus, the former sensors rely on the selective binding of HbA1c to the surface of the electrodes followed by electrochemical signaling in amperometric, voltammetric, impedometric, or potentiometric mode. Redox active markers, such as ferrocene derivatives and ferricyanide/ferrocyanide ions, are often used for electrochemical signaling. For the latter sensors, HbA1c must be digested in advance by proteolytic enzymes to produce the FV fragment. FV is electrochemically detected through catalytic oxidation by fructosyl amine oxidase or by selective binding to imprinted polymers. The performance characteristics of HbA1c sensors are discussed in relation to their use in the diagnosis and control of diabetic mellitus

    Recent Progress in Lectin-Based Biosensors

    No full text
    This article reviews recent progress in the development of lectin-based biosensors used for the determination of glucose, pathogenic bacteria and toxins, cancer cells, and lectins. Lectin proteins have been widely used for the construction of optical and electrochemical biosensors by exploiting the specific binding affinity to carbohydrates. Among lectin proteins, concanavalin A (Con A) is most frequently used for this purpose as glucose- and mannose-selective lectin. Con A is useful for immobilizing enzymes including glucose oxidase (GOx) and horseradish peroxidase (HRP) on the surface of a solid support to construct glucose and hydrogen peroxide sensors, because these enzymes are covered with intrinsic hydrocarbon chains. Con A-modified electrodes can be used as biosensors sensitive to glucose, cancer cells, and pathogenic bacteria covered with hydrocarbon chains. The target substrates are selectively adsorbed to the surface of Con A-modified electrodes through strong affinity of Con A to hydrocarbon chains. A recent topic in the development of lectin-based biosensors is a successful use of nanomaterials, such as metal nanoparticles and carbon nanotubes, for amplifying output signals of the sensors. In addition, lectin-based biosensors are useful for studying glycan expression on living cells

    Recent Progress in Ferrocene-Modified Thin Films and Nanoparticles for Biosensors

    No full text
    This article reviews recent progress in the development of ferrocene (Fc)-modified thin films and nanoparticles in relation to their biosensor applications. Redox-active materials in enzyme biosensors commonly use Fc derivatives, which mediate electron transfer between the electrode and enzyme active site. Either voltammetric or amperometric signals originating from redox reactions of Fc are detected or modulated by the binding of analytes on the electrode. Fc-modified thin films have been prepared by a variety of protocols, including in situ polymerization, layer-by-layer (LbL) deposition, host-guest complexation and molecular recognitions. In situ polymerization provides a facile way to form Fc thin films, because the Fc polymers are directly deposited onto the electrode surface. LbL deposition, which can modulate the film thickness and Fc content, is suitable for preparing well-organized thin films. Other techniques, such as host-guest complexation and protein-based molecular recognition, are useful for preparing Fc thin films. Fc-modified Au nanoparticles have been widely used as redox-active materials to fabricate electrochemical biosensors. Fc derivatives are often attached to Au nanoparticles through a thiol-Au linkage. Nanoparticles consisting of inorganic porous materials, such as zeolites and iron oxide, and nanoparticle-based composite materials have also been used to prepare Fc-modified nanoparticles. To construct biosensors, Fc-modified nanoparticles are immobilized on the electrode surface together with enzymes
    • …
    corecore