43 research outputs found

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Search for Light Fermionic Dark Matter Absorption on Electrons in PandaX-4T

    Full text link
    We report a search on a sub-MeV fermionic dark matter absorbed by electrons with an outgoing active neutrino using the 0.63 tonne-year exposure collected by PandaX-4T liquid xenon experiment. No significant signals are observed over the expected background. The data are interpreted into limits to the effective couplings between such dark matter and electrons. For axial-vector or vector interactions, our sensitivity is competitive in comparison to existing astrophysical bounds on the decay of such dark matter into photon final states. In particular, we present the first direct detection limits for an axial-vector (vector) interaction which are the strongest in the mass range from 25 to 45 (35 to 50) keV/c2^2

    Fast and Reliable Burst Data Transmission for Backscatter Communications

    No full text
    Computational radio frequency identification (CRFID) sensors are able to transfer potentially large amounts of data to the reader in the radio frequency range. However, the existing EPC C1G2 protocol is inefficient when there are abundant critical and emergency data to be transmitted and cannot adapt to changing energy-harvesting and channel conditions. In this paper, we propose a fast and reliable method for burst data transmission by fragmenting large data packets into blocks and we introduce a burst transmission mechanism to optimize the EPC C1G2 communication procedure for burst transmission when there are critical and emergency data to be transmitted. In addition, we utilize erasure codes to reduce Acknowledgement (ACK) delay and to improve system reliability. Our results show that our proposed scheme significantly outperforms the current fixed frame length approach and the dynamic frame length and charging time adaptation scheme (DFCA) and that the goodput is close to the theoretically optimal value under different energy-harvesting and channel conditions

    A MEMS-IMU Assisted BDS Triple-Frequency Ambiguity Resolution Method in Complex Environments

    No full text
    Emerging technologies such as smart cities and unmanned vehicles all need Global Navigation Satellite Systems (GNSS) to provide high-precision positioning and navigation services. Fast and reliable carrier phase ambiguity resolution (AR) is a prerequisite for high-precision positioning. The poor satellite geometry and severe multipath effect caused by Beidou Navigation Satellite System (BDS) signal occlusion and reflection in complex environments will degrade the AR performance. In this contribution, a fast triple-frequency AR method combining Microelectromechanical System-Inertial Measurement Unit (MEMS-IMU) and BDS is proposed. First, the Extra-Wide Lane (EWL) ambiguity is fixed with the positioning parameters of MEMS-IMU instead of the pseudorange. Then, the phase noise variance of Narrow Lane (NL) observation is obtained from ambiguity-fixed EWL observation to reduce the total noise level of NL observation, and the NL ambiguity can be reliably fixed, and the BDS positioning result is obtained. Finally, the BDS positioning result is used as the posterior measurement of the extended Kalman filter to update the MEMS-IMU positioning parameters to form the coupling loop of MEMS-IMU and BDS. The data of urban road vehicle experiments were collected to verify the feasibility and effectiveness of the proposed algorithm. Results show that MEMS-IMU can speed up AR, and reduction of total noise level can significantly improve the reliability of AR
    corecore