4 research outputs found

    Query processing in complex modern traffic networks

    Get PDF
    The transport sector generates about one quarter of all greenhouse gas emissions worldwide. In the European Union (EU), passenger cars and light-duty trucks make up for over half of these traffic-related emissions. It is evident that everyday traffic is a serious environmental threat. At the same time, transport is a key factor for the ambitious EU climate goals; among them, for instance, the reduction of greenhouse gas emissions by 85 to 90 percent in the next 35 years. This thesis investigates complex traffic networks and their requirements from a computer science perspective. Modeling of and query processing in modern traffic networks are pivotal topics. Challenging theoretical problems are examined from different perspectives, novel algorithmic solutions are provided. Practical problems are investigated and solved, for instance, employing qualitative crowdsourced information and sensor data of various sources. Modern traffic networks are often modeled as graphs, i.e., defined by sets of nodes and edges. In conventional graphs, the edges are assigned numerical weights, for instance, reflecting cost criteria like distance or travel time. In multicriteria networks, the edges reflect multiple, possibly dynamically changing cost criteria. While these networks allow for diverse queries and meaningful insight, query processing usually is significantly more complex. Novel means for computation are required to keep query processing efficient. The crucial task of computing optimal paths is particularly expensive under multiple criteria. The most established set of optimal paths in multicriteria networks is referred to as path skyline (or set of pareto-optimal paths). Until now, computing the path skyline either required extensive precomputation or networks of minor size or complexity. Neither of these demands can be made on modern traffic networks. This thesis presents a novel method which makes on-the-fly computation of path skylines possible, even in dynamic networks with three or more cost criteria. Another problem examined is the exponentially growth of path skylines. The number of elements in a path skyline is potentially exponential in the number of cost criteria and the number of edges between start and target. This often produces less meaningful results, sometimes hindering usability. These drawbacks emphasize the importance of the linear path skyline which is investigated in this thesis. The linear path skyline is based on a different notion of optimality. By the notion of optimality, the linear path skyline is a subset of the conventional path skyline but in general contains less and more diverse elements. Thus, the linear path skyline facilitates interpretation while in general reducing computational effort. This topic is first studied in networks with two cost criteria and subsequently extended to more cost criteria. These cost criteria are not limited to purely quantitative measures like distance and travel time. This thesis examines the integration of qualitative information into abstractly modeled road networks. It is proposed to mine crowdsourced data for qualitative information and use this information to enrich road network graphs. These enriched networks may in turn be used to produce routing suggestions which reflect an opinion of the crowd. From data processing to knowledge extracting, network enrichment and route computation, the possibilities and challenges of crowdsourced data as a source for information are surveyed. Additionally, this thesis substantiates the practicability of network enrichment in real-world experiments. The description of a demonstration framework which applies some of the presented methods to the use case of tourist route recommendation serves as an example. The methods may also be applied to a novel graph-based routing problem proposed in this thesis. The problem extends the family of Orienteering Problems which find frequent application in tourist routing and other tasks. An approximate solution to this NP-hard problem is presented and evaluated on a large scale, real-world, time-dependent road network. Another central aspect of modern traffic networks is the integration of sensor data, often referred to as telematics. Nowadays, manifold sensors provide a plethora of data. Using this data to optimize traffic is and will continue to be a challenging task for research and industry. Some of the applications which qualify for the integration of modern telematics are surveyed in this thesis. For instance, the abstract problem of consumable and reoccurring resources in road networks is studied. An application of this problem is the search for a vacant parking space. Taking statistical and real-time sensor information into account, a stochastic routing algorithm which maximizes the probability of finding a vacant space is proposed. Furthermore, the thesis presents means for the extraction of driving preferences, helping to better understand user behavior in traffic. The theoretical concepts partially find application in a demonstration framework described in this thesis. This framework provides features which were developed for a real-world pilot project on the topics of electric and shared mobility. Actual sensor car data collected in the project, gives insight to the challenges of managing a fleet of electric vehicles.Verkehrsmittel erzeugen rund ein Viertel aller Treibhausgas-Emissionen weltweit. FĂŒr ĂŒber die HĂ€lfte der verkehrsbedingten Emissionen in der EuropĂ€ischen Union (EU) zeichnen PKW und Kleinlaster verantwortlich. Die Tragweite ökologischer Konsequenzen durch alltĂ€glichen Verkehr ist enorm. Zugleich ist ein Umdenken im Bezug auf Verkehr entscheidend, um die ehrgeizigen klimapolitischen Ziele der EU zu erfĂŒllen. Dazu gehört unter anderem, Treibhausgas-Emissionen bis 2050 um 85 bis 90 Prozent zu verringern. Die vorliegende Arbeit widmet sich den komplexen Anforderungen an Verkehr und Verkehrsnetzwerke aus der Sicht der Informatik. Dabei spielen sowohl die Modellierung von als auch die Anfragebearbeitung in modernen Verkehrsnetzwerken eine entscheidende Rolle. Theoretische Fragestellungen werden aus unterschiedlichen Persepektiven beleuchtet, neue Algorithmen werden vorgestellt. Ebenso werden praktische Fragestellungen untersucht und gelöst, etwa durch die Einbindung nutzergenerierten Inhalts oder die Verwendung von Sensordaten aus unterschiedlichen Quellen. Moderne Verkehrsnetzwerke werden hĂ€ufig als Graphen modelliert, d.h., durch Knoten und Kanten dargestellt. Man unterscheidet zwischen konventionellen Graphen und sogenannten Multiattributs-Graphen. WĂ€hrend die Kanten konventioneller Graphen numerische Gewichte tragen, die statische Kostenkriterien wie Distanz oder Reisezeit modellieren, beschreiben die Kantengewichte in Multiattributs-Graphen mehrere, möglicherweise dynamisch verĂ€nderliche Kostenkriterien. Das erlaubt einerseits vielseitige Anfragen und aussagekrĂ€ftige Erkenntnisse, macht die Anfragebearbeitung jedoch ungleich komplexer und verlangt deshalb nach neuen Berechnungsmethoden. Eine besonders aufwendige Anfrage ist die Berechnung optimaler Pfade, zugleich eine der zentralsten Fragestellungen. Die gĂ€ngigste Menge optimaler Pfade wird als Pfad-Skyline (auch: Menge der pareto-optimalen Pfade) bezeichnet. Die effiziente Berechnung der Pfad-Skyline setzte bisher ĂŒberschaubare Netzwerke oder betrĂ€chtliche Vorberechnungen voraus. Keine der beiden Bedingung kann in modernen Verkehrsnetzwerken erfĂŒllt werden. Diese Arbeit stellt deshalb eine Methode vor, die die Berechnung der Pfad-Skyline erheblich beschleunigt, selbst in dynamischen Netzwerken mit drei oder mehr Kostenkriterien. Außerdem wird das Problem des exponentiellen Wachstums der Pfad-Skyline betrachtet. Die Anzahl der Elemente der Pfad-Skyline wĂ€chst im schlechtesten Fall exponentiell in der Anzahl der Kostenkriterien sowie in der Entfernung zwischen Start und Ziel. Dies kann zu unĂŒbersichtlichen und wenig aussagekrĂ€ftigen Resultatmengen fĂŒhren. Diese Nachteile unterstreichen die Bedeutung der linearen Pfad-Skyline, die auch im Rahmen diese Arbeit untersucht wird. Die lineare Pfad-Skyline folgt einer anderen Definition von OptimalitĂ€t. Stets ist die lineare Pfad-Skyline eine Teilmenge der konventionellen Pfad-Skyline, meist enthĂ€lt sie deutlich weniger, unterschiedlichere Resultate. Dadurch lĂ€sst sich die lineare Pfad-Skyline im Allgemeinen schneller berechnen und erleichtert die Interpretation der Resultate. Die Berechnung der linearen Pfad-Skyline wird erst fĂŒr Netzwerke mit zwei Kostenkriterien, anschließend fĂŒr Netzwerke mit beliebig vielen Kostenkriterien untersucht. Kostenkriterien sind nicht notwendigerweise auf rein quantitative Maße wie Distanz oder Reisezeit beschrĂ€nkt. Diese Arbeit widmet sich auch der Integration qualitativer Informationen, mit dem Ziel, intuitivere und greifbarere Routingergebnisse zu erzeugen. Dazu wird die Möglichkeit untersucht, abstrakte Straßennetzwerke mit qualitativen Informationen anzureichern, wobei die Informationen aus nutzergenerierten Daten geschöpft werden. Solche sogenannten Enriched Networks ermöglichen die Berechnung von Pfaden, die in gewisser Weise das Wissen der Nutzer reflektieren. Von der Datenverarbeitung, ĂŒber die Extraktion von Wissen, bis hin zum Network-Enrichment und der Pfadberechnung, gibt diese Arbeit einen ĂŒberblick zum Thema. Weiterhin wird die PraktikabilitĂ€t dieses Vorgehens mit Experimenten auf Realdaten untermauert. Die Beschreibung eines Demonstrationstools fĂŒr den Anwendungsfall der Navigation von Touristen dient als anschauliches Beispiel. Die vorgestellten Methoden sind darĂŒber hinaus auch anwendbar auf ein neues, graphentheoretisches Routingproblem, das in dieser Arbeit vorgestellt wird. Es handelt sich dabei um eine zeitabĂ€ngige Erweiterung der Familie der Orienteering Probleme, die hĂ€ufig Anwendung finden, etwa auch im der Bereich der Touristennavigation. Das vorgestellte Problem ist NP-schwer lĂ€sst sich jedoch dank eines hier vorgestellten Algorithmus effizient approximieren. Die Evaluation untermauert die Effizienz des vorgestellten Lösungsansatzes und ist zugleich die erste Auswertung eines zeitabhĂ€ngigen Orienteering Problems auf einem großformatigen Netzwerk. Ein weiterer zentraler Aspekt moderner Verkehrsnetzwerke ist die Integration von Sensordaten, oft unter dem Begriff Telematik zusammengefasst. Heutzutage generiert eine Vielzahl von Sensoren Unmengen an Daten. Diese Daten zur Verkehrsoptimierung einzusetzen ist und bleibt eine wichtige Aufgabe fĂŒr Wissenschaft und Industrie. Einige der Anwendungen, die sich fĂŒr den Einsatz von Telematik anbieten, werden in dieser Arbeit untersucht. So wird etwa das abstrakte Problem konsumierbarer und wiederkehrender Ressourcen im Straßennetzwerk untersucht. Ein alltĂ€gliches Beispiel fĂŒr dieses Problem ist die Parkplatzsuche. Der vorgeschlagene Algorithmus, der die Wahrscheinlichkeit maximiert, einen freien Parkplatz zu finden, baut auf die Verwendung statistischer sowie aktueller Sensordaten. Weiterhin werden Methoden zur Ableitung von FahrerprĂ€ferenzen entwickelt. Die theoretischen Fundamente finden zum Teil in einem hier beschriebenen Demonstrationstool Anwendung. Das Tool veranschaulicht Features, die fĂŒr ein Pilotprojekt zu den Themen ElektromobilitĂ€t und Fahrzeugflotten entwickelt wurden. Im Rahmen eines Pilotversuchs wurden Sensordaten von Elektrofahrzeugen erhoben, die Einblick in die Herausforderungen beim Management von Elektrofahrzeugflotten geben

    ParetoPrep: Fast computation of Path Skylines Queries

    Full text link
    Computing cost optimal paths in network data is a very important task in many application areas like transportation networks, computer networks or social graphs. In many cases, the cost of an edge can be described by various cost criteria. For example, in a road network possible cost criteria are distance, time, ascent, energy consumption or toll fees. In such a multicriteria network, a route or path skyline query computes the set of all paths having pareto optimal costs, i.e. each result path is optimal for different user preferences. In this paper, we propose a new method for computing route skylines which significantly decreases processing time and memory consumption. Furthermore, our method does not rely on any precomputation or indexing method and thus, it is suitable for dynamically changing edge costs. Our experiments demonstrate that our method outperforms state of the art approaches and allows highly efficient path skyline computation without any preprocessing.Comment: 12 pages, 9 figures, technical repor
    corecore