9 research outputs found
Evaluation of Enrolment and Performance Patterns of Male and Female Graduates in Guidance and Counseling Programme: A University of Ibadan Study
The purpose of this study is to review the enrolment pattern and performance of male and female students in the guidance and counselling programme of university of Ibadan, Ibadan, Nigeria. The participants sampled for the study consisted of graduate students in the department of guidance and counselling of faculty of education, university of Ibadan, Ibadan which had undergone the programme from 2008/2009 - 2012/2013 academic sessions. Two hundred and thirty-seven students’ results for the periods in question were used which comprises of ninety-seven males and one hundred and forty female students. The data was extracted from departmental records of admission and graduation lists. To examine the enrolment pattern and their performance pattern, frequency and t-test statistical tools were used. Results on enrolment pattern favoured the female and that there is no significant difference in the academic performance (t=0.536, df + 235 and p = 0.59). This study suggests that the course is not meant for women alone and those females are not significantly performed better than male counterparts. It is recommended that Counselling Association of Nigeria (CASSON) should try as much as possible to educate masses on the importance and usefulness of the course and profession at large for human race. Finally, the schools responsible for producing guidance counsellors should make adequate provision for the counsellors in trainee to be well trained in both theory and practical. Keywords: Enrolment, Performance, Guidance & Counselling, Programme, Gender
Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.
Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.
Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance
INTRODUCTION
Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic.
RATIONALE
We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs).
RESULTS
Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants.
CONCLUSION
Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
A combined electrochemical and DFT investigation of ornidazole as a benign anti-corrosion agent for carbon steel materials in acidizing environments
The corrosion inhibition performance of ornidazole was investigated as an eco-friendly option during the acid cleaning of carbon steel using potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) in combination with density functional theory (DFT) simulations. The inhibition efficiency was noted to rise with a rise in ornidazole concentration and exposure time. The maximum inhibition efficiency after 0, 1 and 7 days were attained at 1.6 g/L with values of 93.8, 96.2 and 98.7 %, respectively. Potentiodynamic polarization revealed that indazole is a mixed-type corrosion inhibitor. EIS indicates and increase in corrosion resistance with ornidazole concentration. SEM/EDX were consistent with the electrochemical results and indicate that ornidazole inhibits steel corrosion by surface adsorption which was consistent with Langmuir adsorption isotherm (R2 = 0.9999). The values of Kads indicate that ornidazole is more strongly adsorbed with an increase in concentration of ornidazole. The values of ΔGads (−5.69 to −11.75 kJ/mol) indicate that the adsorption is spontaneous. The inhibitory properties were found to be related to the molecular properties indicated by theoretical insights from DFT simulations which revealed susceptible adsorption sites on the ornidazole molecules from the deduced quantum descriptors, natural population analysis, density of states and molecular electrostatic potential. The results herein indicate that ornidazole is a suitable corrosion retardant for carbon steel in acidic environments
Low level SARS-CoV-2 RNA detected in plasma samples from a cohort of Nigerians: Implications for blood transfusion.
The present global pandemic triggered by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has lingered for over a year in its devastating effects. Diagnosis of coronavirus disease 2019 (COVID-19) is currently established with a polymerase chain reaction (PCR) test by means of oropharyngeal-, nasopharyngeal-, anal-swabs, sputum and blood plasma. However, oral and nasal swabs are more commonly used. This study, therefore, assessed sensitivity and specificity of plasma as a diagnostic in comparison with a combination of oral and nasal swab samples, and the implications for blood transfusion. Oropharyngeal (OP) and nasopharyngeal (NP) swab samples were obtained from 125 individuals suspected to have COVID-19 and stored in viral transport medium (VTM) tubes. Ten millilitres of blood samples in EDTA were also obtained by venepuncture and spun to obtain plasma. Viral RNA was obtained from both swabs and plasma by manual extraction with Qiagen QIAamp viral RNA Mini Kit. Detection was done using a real time fluorescent RT-qPCR BGI kit, on a QuantStudio 3 real-time PCR instrument. Average age of study participants was 41 years, with 74 (59.2%) being male. Out of the 125 individuals tested for COVID-19, 75 (60%) were positive by OP/NP swab. However, only 6 (4.8%) had a positive plasma result for COVID-19 with median Ct value of 32.4. Sensitivity and specificity of RT-PCR SARS-CoV-2 test using plasma was 8% and 100% respectively. There was no false positive recorded, but 69 (55.2%) false negatives were obtained by plasma. SARS-CoV-2 viral RNA was detected, albeit low (4.8%) in plasma. Plasma is likely not a suitable biological sample to diagnose acute SARS-CoV-2 infection. The implication of transfusing blood in this era of COVID-19 needs further investigations
Comparative performance of SARS-CoV-2 real-time PCR diagnostic assays on samples from Lagos, Nigeria.
A key element in containing the spread of the SARS-CoV-2 infection is quality diagnostics which is affected by several factors. We now report the comparative performance of five real-time diagnostic assays. Nasopharyngeal swab samples were obtained from persons seeking a diagnosis for SARS-CoV-2 infection in Lagos, Nigeria. The comparison was performed on the same negative, low, and high-positive sample set, with viral RNA extracted using the Qiagen Viral RNA Kit. All five assays are one-step reverse transcriptase real-time PCR assays. Testing was done according to each assay's manufacturer instructions for use using real-time PCR platforms. 63 samples were tested using the five qPCR assays, comprising of 15 negative samples, 15 positive samples (Ct = 16-30; one Ct = 35), and 33 samples with Tib MolBiol E-gene Ct value ranging from 36-41. All assays detected all high positive samples correctly. Three assays correctly identified all negative samples while two assays each failed to correctly identify one different negative sample. The consistent detection of positive samples at different Ct/Cq values gives an indication of when to repeat testing and/or establish more stringent in-house cut-off value. The varied performance of different diagnostic assays, mostly with emergency use approvals, for a novel virus is expected. Comparative assays' performance reported may guide laboratories to determine both their repeat testing Ct/Cq range and/or cut-off value
Full length genomic sanger sequencing and phylogenetic analysis of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) in Nigeria.
In an outbreak, effective detection of the aetiological agent(s) involved using molecular techniques is key to efficient diagnosis, early prevention and management of the spread. However, sequencing is necessary for mutation monitoring and tracking of clusters of transmission, development of diagnostics and for vaccines and drug development. Many sequencing methods are fast evolving to reduce test turn-around-time and to increase through-put compared to Sanger sequencing method; however, Sanger sequencing remains the gold standard for clinical research sequencing with its 99.99% accuracy This study sought to generate sequence data of SARS-CoV-2 using Sanger sequencing method and to characterize them for possible site(s) of mutations. About 30 pairs of primers were designed, synthesized, and optimized using endpoint PCR to generate amplicons for the full length of the virus. Cycle sequencing using BigDye Terminator v.3.1 and capillary gel electrophoresis on ABI 3130xl genetic analyser were performed according to the manufacturers' instructions. The sequence data generated were assembled and analysed for variations using DNASTAR Lasergene 17 SeqMan Ultra. Total length of 29,760bp of SARS-CoV-2 was assembled from the sample analysed and deposited in GenBank with accession number: MT576584. Blast result of the sequence assembly shows a 99.97% identity with the reference sequence. Variations were noticed at positions: nt201, nt2997, nt14368, nt16535, nt20334, and nt28841-28843, which caused amino acid alterations at the S (aa614) and N (aa203-204) regions. The mutations observed at S and N-gene in this study may be indicative of a gradual changes in the genetic coding of the virus hence, the need for active surveillance of the viral genome
Twelve-month observational study of children with cancer in 41 countries during the COVID-19 pandemic
Childhood cancer is a leading cause of death. It is unclear whether the COVID-19 pandemic has impacted childhood cancer mortality. In this study, we aimed to establish all-cause mortality rates for childhood cancers during the COVID-19 pandemic and determine the factors associated with mortality