24,789 research outputs found
Phase transition in protocols minimizing work fluctuations
For two canonical examples of driven mesoscopic systems - a
harmonically-trapped Brownian particle and a quantum dot - we numerically
determine the finite-time protocols that optimize the compromise between the
standard deviation and the mean of the dissipated work. In the case of the
oscillator, we observe a collection of protocols that smoothly trade-off
between average work and its fluctuations. However, for the quantum dot, we
find that as we shift the weight of our optimization objective from average
work to work standard deviation, there is an analog of a first-order phase
transition in protocol space: two distinct protocols exchange global optimality
with mixed protocols akin to phase coexistence. As a result, the two types of
protocols possess qualitatively different properties and remain distinct even
in the infinite duration limit: optimal-work-fluctuation protocols never
coalesce with the minimal work protocols, which therefore never become
quasistatic.Comment: 6 pages, 6 figures + SI as ancillary fil
Aspects of a supersymmetric Brans-Dicke theory
We consider a locally supersymmetric theory where the Planck mass is replaced
by a dynamical superfield. This model can be thought of as the Minimal
Supersymmetric extension of the Brans-Dicke theory (MSBD). The motivation that
underlies this analysis is the research of possible connections between Dark
Energy models based on Brans-Dicke-like theories and supersymmetric Dark Matter
scenarios. We find that the phenomenology associated with the MSBD model is
very different compared to the one of the original Brans-Dicke theory: the
gravitational sector does not couple to the matter sector in a universal metric
way. This feature could make the minimal supersymmetric extension of the BD
idea phenomenologically inconsistent.Comment: 6 pages, one section is adde
(Never) Mind your p's and q's: Von Neumann versus Jordan on the Foundations of Quantum Theory
In two papers entitled "On a new foundation [Neue Begr\"undung] of quantum
mechanics," Pascual Jordan (1927b,g) presented his version of what came to be
known as the Dirac-Jordan statistical transformation theory. As an alternative
that avoids the mathematical difficulties facing the approach of Jordan and
Paul A. M. Dirac (1927), John von Neumann (1927a) developed the modern Hilbert
space formalism of quantum mechanics. In this paper, we focus on Jordan and von
Neumann. Central to the formalisms of both are expressions for conditional
probabilities of finding some value for one quantity given the value of
another. Beyond that Jordan and von Neumann had very different views about the
appropriate formulation of problems in quantum mechanics. For Jordan, unable to
let go of the analogy to classical mechanics, the solution of such problems
required the identication of sets of canonically conjugate variables, i.e., p's
and q's. For von Neumann, not constrained by the analogy to classical
mechanics, it required only the identication of a maximal set of commuting
operators with simultaneous eigenstates. He had no need for p's and q's. Jordan
and von Neumann also stated the characteristic new rules for probabilities in
quantum mechanics somewhat differently. Jordan (1927b) was the first to state
those rules in full generality. Von Neumann (1927a) rephrased them and, in a
subsequent paper (von Neumann, 1927b), sought to derive them from more basic
considerations. In this paper we reconstruct the central arguments of these
1927 papers by Jordan and von Neumann and of a paper on Jordan's approach by
Hilbert, von Neumann, and Nordheim (1928). We highlight those elements in these
papers that bring out the gradual loosening of the ties between the new quantum
formalism and classical mechanics.Comment: New version. The main difference with the old version is that the
introduction has been rewritten. Sec. 1 (pp. 2-12) in the old version has
been replaced by Secs. 1.1-1.4 (pp. 2-31) in the new version. The paper has
been accepted for publication in European Physical Journal
Quantum Discord and Quantum Computing - An Appraisal
We discuss models of computing that are beyond classical. The primary
motivation is to unearth the cause of nonclassical advantages in computation.
Completeness results from computational complexity theory lead to the
identification of very disparate problems, and offer a kaleidoscopic view into
the realm of quantum enhancements in computation. Emphasis is placed on the
`power of one qubit' model, and the boundary between quantum and classical
correlations as delineated by quantum discord. A recent result by Eastin on the
role of this boundary in the efficient classical simulation of quantum
computation is discussed. Perceived drawbacks in the interpretation of quantum
discord as a relevant certificate of quantum enhancements are addressed.Comment: To be published in the Special Issue of the International Journal of
Quantum Information on "Quantum Correlations: entanglement and beyond." 11
pages, 4 figure
Efficient quantum processing of ideals in finite rings
Suppose we are given black-box access to a finite ring R, and a list of
generators for an ideal I in R. We show how to find an additive basis
representation for I in poly(log |R|) time. This generalizes a recent quantum
algorithm of Arvind et al. which finds a basis representation for R itself. We
then show that our algorithm is a useful primitive allowing quantum computers
to rapidly solve a wide variety of problems regarding finite rings. In
particular we show how to test whether two ideals are identical, find their
intersection, find their quotient, prove whether a given ring element belongs
to a given ideal, prove whether a given element is a unit, and if so find its
inverse, find the additive and multiplicative identities, compute the order of
an ideal, solve linear equations over rings, decide whether an ideal is
maximal, find annihilators, and test the injectivity and surjectivity of ring
homomorphisms. These problems appear to be hard classically.Comment: 5 page
Quantum Algorithms for Fermionic Quantum Field Theories
Extending previous work on scalar field theories, we develop a quantum
algorithm to compute relativistic scattering amplitudes in fermionic field
theories, exemplified by the massive Gross-Neveu model, a theory in two
spacetime dimensions with quartic interactions. The algorithm introduces new
techniques to meet the additional challenges posed by the characteristics of
fermionic fields, and its run time is polynomial in the desired precision and
the energy. Thus, it constitutes further progress towards an efficient quantum
algorithm for simulating the Standard Model of particle physics.Comment: 29 page
Quantum Algorithms for Quantum Field Theories
Quantum field theory reconciles quantum mechanics and special relativity, and
plays a central role in many areas of physics. We develop a quantum algorithm
to compute relativistic scattering probabilities in a massive quantum field
theory with quartic self-interactions (phi-fourth theory) in spacetime of four
and fewer dimensions. Its run time is polynomial in the number of particles,
their energy, and the desired precision, and applies at both weak and strong
coupling. In the strong-coupling and high-precision regimes, our quantum
algorithm achieves exponential speedup over the fastest known classical
algorithm.Comment: v2: appendix added (15 pages + 25-page appendix
Quantum Computation of Scattering in Scalar Quantum Field Theories
Quantum field theory provides the framework for the most fundamental physical theories to be confirmed experimentally, and has enabled predictions of unprecedented precision. However, calculations of physical observables often require great computational complexity and can generally be performed only when the interaction strength is weak. A full understanding of the foundations and rich consequences of quantum field theory remains an outstanding challenge. We develop a quantum algorithm to compute relativistic scattering amplitudes in massive phi-fourth theory in spacetime of four and fewer dimensions. The algorithm runs in a time that is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. Thus, it offers exponential speedup over existing classical methods at high precision or strong coupling
Einstein and Jordan frames reconciled: a frame-invariant approach to scalar-tensor cosmology
Scalar-Tensor theories of gravity can be formulated in different frames, most
notably, the Einstein and the Jordan one. While some debate still persists in
the literature on the physical status of the different frames, a frame
transformation in Scalar-Tensor theories amounts to a local redefinition of the
metric, and then should not affect physical results. We analyze the issue in a
cosmological context. In particular, we define all the relevant observables
(redshift, distances, cross-sections, ...) in terms of frame-independent
quantities. Then, we give a frame-independent formulation of the Boltzmann
equation, and outline its use in relevant examples such as particle freeze-out
and the evolution of the CMB photon distribution function. Finally, we derive
the gravitational equations for the frame-independent quantities at first order
in perturbation theory. From a practical point of view, the present approach
allows the simultaneous implementation of the good aspects of the two frames in
a clear and straightforward way.Comment: 15 pages, matches version to be published on Phys. Rev.
- …