8 research outputs found

    X inactivation counting and choice is a stochastic process: Evidence for involvement of an X-linked activator

    No full text
    SummaryFemale mammalian cells achieve dosage compensation of X-encoded genes by X chromosome inactivation (XCI). This process is thought to involve X chromosome counting and choice. To explore how this process is initiated, we analyzed XCI in tetraploid XXXX, XXXY, and XXYY embryonic stem cells and found that every X chromosome within a single nucleus has an independent probability to initiate XCI. This finding suggests a stochastic mechanism directing XCI counting and choice. The probability is directly proportional to the X chromosome:ploidy ratio, indicating the presence of an X-encoded activator of XCI, that itself is inactivated by the XCI process. Deletion of a region including Xist, Tsix, and Xite still results in XCI on the remaining wild-type X chromosome in female cells. This result supports a stochastic model in which each X chromosome in a nucleus initiates XCI independently and positions an X-encoded trans-acting XCI-activator outside the deleted region

    X Chromosome Inactivation Is Initiated in Human Preimplantation Embryos

    Get PDF
    X chromosome inactivation (XCI) is the mammalian mechanism that compensates for the difference in gene dosage between XX females and XY males. Genetic and epigenetic regulatory mechanisms induce transcriptional silencing of one X chromosome in female cells. In mouse embryos, XCI is initiated at the preimplantation stage following early whole-genome activation. It is widely thought that human embryos do not employ XCI prior to implantation. Here, we show that female preimplantation embryos have a progressive accumulation of XIST RNA on one of the two X chromosomes, starting around the 8-cell stage. XIST RNA accumulates at the morula and blastocyst stages and is associated with transcriptional silencing of the XIST-coated chromosomal region. These findings indicate that XCI is initiated in female human preimplantation-stage embryos and suggest that preimplantation dosage compensation is evolutionarily conserved in placental mammals

    CTCF regulates cell cycle progression of alpha beta T cells in the thymus

    No full text
    The 11-zinc finger protein CCCTC-binding factor ( CTCF) is a highly conserved protein, involved in imprinting, longrange chromatin interactions and transcription. To investigate its function in vivo, we generated mice with a conditional Ctcf knockout allele. Consistent with a previous report, we find that ubiquitous ablation of the Ctcf gene results in early embryonic lethality. Tissue-specific inactivation of CTCF in thymocytes specifically hampers the differentiation of ab T cells and causes accumulation of late double-negative and immature single-positive cells in the thymus of mice. These cells are normally large and actively cycling, and contain elevated amounts of CTCF. In Ctcf knockout animals, however, these cells are small and blocked in the cell cycle due to increased expression of the cyclin-CDK inhibitors p21 and p27. Taken together, our results show that CTCF is required in a dose-dependent manner and is involved in cell cycle progression of ab T cells in the thymus. We propose that CTCF positively regulates cell growth in rapidly dividing thymocytes so that appropriate number of cells are generated before positive and negative selection in the thymus

    CTCF regulates the local epigenetic state of ribosomal DNA repeats

    No full text
    Background: CCCTC binding factor (CTCF) is a highly conserved zinc finger protein, which is involved in chromatin organization, local histone modifications, and RNA polymerase II-mediated gene transcription. CTCF may act by binding tightly to DNA and recruiting other proteins to mediate its various functions in the nucleus. To further explore the role of this essential factor, we used a mass spectrometry-based approach to screen for novel CTCF-interacting partners. Results: Using biotinylated CTCF as bait, we identified upstream binding factor (UBF) and multiple other components of the RNA polymerase I complex as potential CTCF-interacting partners. Interestingly, CTCFL, the testis-specific paralog of CTCF, also binds UBF. The interaction between CTCF(L) and UBF is direct, and requires the zinc finger domain of CTCF(L) and the high mobility group (HMG)-box 1 and dimerization domain of UBF. Because UBF is involved in RNA polymerase I-mediated ribosomal (r)RNA transcription, we analyzed CTCF binding to the rDNA repeat. We found that CTCF bound to a site upstream of the rDNA spacer promoter and preferred non-methylated over methylated rDNA. DNA binding by CTCF in turn stimulated binding of UBF. Absence of CTCF in cultured cells resulted in decreased association of UBF with rDNA and in nucleolar fusion. Furthermore, lack of CTCF led to reduced binding of RNA polymerase I and variant histone H2A.Z near the rDNA spacer promoter, a loss of specific histone modifications, and diminished transcription of non-coding RNA from the spacer promoter. Conclusions: UBF is the first common interaction partner of CTCF and CTCFL, suggesting a role for these proteins in chromatin organization of the rDNA repeats. We propose that CTCF affects RNA polymerase I-mediated events globally by controlling nucleolar number, and locally by regulating chromatin at the rDNA spacer promoter, similar to RNA polymerase II promoters. CTCF may load UBF onto rDNA, thereby forming part of a network that maintains rDNA genes poised for transcription
    corecore