3 research outputs found

    Exploring immune status in peripheral blood and tumor tissue in association with survival in patients with multi-organ metastatic colorectal cancer

    Get PDF
    Colorectal cancer (CRC) raises considerable clinical challenges, including a high mortality rate once the tumor spreads to distant sites. At this advanced stage, more accurate prediction of prognosis and treatment outcome is urgently needed. The role of cancer immunity in metastatic CRC (mCRC) is poorly understood. Here, we explore cellular immune cell status in patients with multi-organ mCRC. We analyzed T cell infiltration in primary tumor sections, surveyed the lymphocytic landscape of liver metastases, and assessed circulating mononuclear immune cells. Besides asking whether immune cells are associated with survival at this stage of the disease, we investigated correlations between the different tissue types; as this could indicate a dominant immune phenotype. Taken together, our analyses corroborate previous observations that higher levels of CD8+ T lymphocytes link to better survival outcomes. Our findings therefore extend evidence from earlier stages of CRC to indicate an important role for cancer immunity in disease control even after metastatic spreading to multiple organs. This finding may help to improve predicting outcome of patients with mCRC and suggests a future role for immunotherapeutic strategies.</p

    Long-Lasting, Pathway-Specific Impairment of a Novel Form of Spike-Timing-Dependent Long-Term Depression by Neuropathic Pain in the Anterior Cingulate Cortex

    No full text
    Malfunctioning synaptic plasticity is one of the major mechanisms contributing to the development of chronic pain. We studied spike-timing dependent depression (tLTD) in the anterior cingulate cortex (ACC) of male mice, a brain region involved in processing emotional aspects of pain. tLTD onto layer 5 pyramidal neurons depended on postsynaptic calcium-influx through GluN2B-containing NMDARs and retrograde signaling via nitric oxide to reduce presynaptic release probability. After chronic constriction injury of the sciatic nerve, a model for neuropathic pain, tLTD was rapidly impaired; and this phenotype persisted even beyond the time of recovery from mechanical sensitization. Exclusion of GluN2B-containing NMDARs from the postsynaptic site specifically at projections from the anterior thalamus to the ACC caused the tLTD phenotype, whereas signaling downstream of nitric oxide synthesis remained intact. Thus, transient neuropathic pain can leave a permanent trace manifested in the disturbance of synaptic plasticity in a specific afferent pathway to the cortex. SIGNIFICANCE STATEMENT Synaptic plasticity is one of the main mechanisms that contributes to the development of chronic pain. Most studies have focused on potentiation of excitatory synaptic transmission, but very little is known about the reduction in synaptic strength. We have focused on the ACC, a brain region associated with the processing of emotional and affective components of pain. We studied spike-timing dependent LTD, which is a biologically plausible form of synaptic plasticity, that depends on the relative timing of presynaptic and postsynaptic activity. We found a long-lasting and pathway-specific suppression of the induction mechanism for spike-timing dependent LTD from the anterior thalamus to the ACC, suggesting that this pathology might be involved in altered emotional processing in pain

    Lost in Translation? On the Need for Convergence in Animal and Human Studies on the Role of Dopamine in Diet-Induced Obesity

    No full text
    corecore