4 research outputs found

    Out of Amazonia: Late Holocene Climate Change and the Tupi-Guarani Trans-Continental Expansion

    Get PDF
    This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this recordThe late Holocene expansion of the Tupi-Guarani languages from southern Amazonia to SE South America constitutes one of the largest expansions of any linguistic family in the world, spanning ~ 4000 km between latitudes 0°S and 35°S at about 2500 yr B.P. However, the underlying reasons for this expansion are a matter of debate. Here, we compare continental-scale paleoecological, paleoclimate, and archaeological datasets, to examine the role of climate change in facilitating the expansion of this forest-farming culture. Because this expansion lies within the path of the South American Low-Level Jet, the key mechanism for moisture transport across lowland South America, we were able to explore the relationship between climate change, forest expansion, and the Tupi-Guarani. Our data synthesis shows broad synchrony between late Holocene increasing precipitation and southerly expansion of both tropical forest and Guarani archaeological sites – the southernmost branch of the Tupi-Guarani. We conclude that climate change likely facilitated expansion of the Guarani forest-farming culture by increasing the area of forested landscape that they could exploit, showing a prime example of ecological opportunism.The ideas and themes developed in this paper stem from a European Research Council project ‘Pre-Columbian Amazon-Scale Transformations’ (ERC-CoG 616179) to JI. The University of Reading’s ‘Centre for Past Climate Change’ funded a writing workshop for this paper. RS was funded by an NERC ‘Scenario’ DTP PhD award. JGS was funded by a CAPES PhD scholarship (Ministry of Education, Brazil). JFC and MLC received postdoctoral funding from the University of Reading and the Arts and Humanities Research Council, respectively

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma.

    Full text link
    Primary angle closure glaucoma (PACG) is a major cause of blindness worldwide. We conducted a genome-wide association study (GWAS) followed by replication in a combined total of 10,503 PACG cases and 29,567 controls drawn from 24 countries across Asia, Australia, Europe, North America, and South America. We observed significant evidence of disease association at five new genetic loci upon meta-analysis of all patient collections. These loci are at EPDR1 rs3816415 (odds ratio (OR) = 1.24, P = 5.94 × 10(-15)), CHAT rs1258267 (OR = 1.22, P = 2.85 × 10(-16)), GLIS3 rs736893 (OR = 1.18, P = 1.43 × 10(-14)), FERMT2 rs7494379 (OR = 1.14, P = 3.43 × 10(-11)), and DPM2-FAM102A rs3739821 (OR = 1.15, P = 8.32 × 10(-12)). We also confirmed significant association at three previously described loci (P < 5 × 10(-8) for each sentinel SNP at PLEKHA7, COL11A1, and PCMTD1-ST18), providing new insights into the biology of PACG

    Genome-wide association study identifies five new susceptibility loci for primary angle closure glaucoma

    Full text link
    corecore