6 research outputs found

    Civil Infrastructure Management Models for the Connected and Automated Vehicles Technology

    No full text
    The new concept of Connected and Automated Vehicles (CAVs) necessitates a need to review the approach of managing the existing civil infrastructure system (highways, bridges, sign structures, etc.). This paper provides a basic introduction to the CAV concept, assesses the infrastructure requirements for CAVs, and identifies the appropriateness of the existing infrastructure, and needs, in terms of the condition assessment and deterioration modeling. With focus on the Vehicle-to-Infrastructure (V2I) requirements for CAVs, the main elements required on the infrastructure are the Roadside Units (RSUs), which are primarily for communication; they are similar to non-structural transportation assets, such as traffic signals, signs, etc. The ongoing pertinent efforts of agencies and the private industry are reviewed, including the V2I Deployment Coalition (American Association of State Transportation Officials (AASHTO), the Institute of Transportation Engineers (ITE), and the Intelligent Transportation Society of America (ITS America)). Current methods of transportation asset management, particularly, of non-structural elements, are also reviewed. Two reliability-based models were developed and demonstrated for the deterioration of RSUs, including the age replacement model, and a combined survivor function considering the vulnerability of the CAV elements to natural hazards, such as the hurricanes. The paper also discusses the implications of the CAV technology on traffic models, particularly, how it affects user costs’ computations

    Development of a triboluminescence-based sensor system for concrete structures

    No full text
    The triboluminescence phenomenon has been proposed as a sensor system for detecting and monitoring damage in aerospace and civil infrastructure systems (CIS). While significant work is being done in developing such systems for aerospace structures, little or no work is being done in developing triboluminescence-based sensor systems for the critical and aging CIS. This article reports some findings in the work being done by the authors to develop such a sensor system for civil infrastructure applications. A ZnS:Mn-based cementitious patch that emits light when stressed or fractured was developed and its triboluminescence performance under loading characterized. The results show that a ZnS:Mn concentration level of 10% gives the best triboluminescence response without adversely affecting the compressive strength of the patch, while also minimizing the use of the expensive ZnS:Mn crystals. The triboluminescence response increased as the concentration of ZnS:Mn in the system increased. The highest triboluminescence response was obtained at a concentration level of 25% but resulted in significant reduction in the system\u27s compressive strength. Nonetheless, the presence of ZnS:Mn affects the hydration process by slowing down the conversion of the needle-shaped crystals of calcium sulfoaluminate hydrate (ettringites) into the monosulfate hydrate that makes concrete vulnerable to sulfate attack. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav

    Progress in triboluminescence-based smart optical sensor system

    No full text
    Extensive research work has been done in recent times to apply the triboluminescence (TL) phenomenon for damage detection in engineering structures. Of particular note are the various attempts to apply it in the detection of impact damages in composites and aerospace structures. This is because TL-based sensor systems have a great potential for wireless, in-situ and distributed (WID) structural health monitoring when fully developed. This review article highlights development and the current state-of-the-art in the application of TL-based sensor systems. The underlying mechanisms believed to be responsible for triboluminescence, particularly in zinc sulfide manganese, a highly triboluminescent material, are discussed. The challenges militating against the full exploitation and field application of TL sensor systems are also identified. Finally, viable solutions and approaches to address these challenges are enumerated. © 2011 Elsevier B.V. All rights reserved

    Driver Behavior at a Freeway Merge to Mixed Traffic of Conventional and Connected Autonomous Vehicles

    No full text
    Freeway merge ramps serve as one of the most challenging areas in traffic operations. This paper primarily focuses on creating a mixed traffic of conventional and connected/autonomous vehicles (CAVs) on freeways, and capturing driver behaviors both for the merging vehicle on the ramp and the freeway vehicles. The mixed distribution of vehicle headways of the freeway vehicles, developed based on various market penetration rates of the CAVs, was used to randomly generate vehicles through Monte Carlo simulation, and assigned as headways in a driving simulator. Based on perception, young drivers on the merge ramp were observed to choose critical headway gaps of 2.9 s, 1.8 s, and 1.7 s for freeway traffic of 0%, 50%, 75% penetration rates, respectively. For similar CAV penetration rates, the critical gaps observed for elderly drivers were 3.5 s, 2.0 s, and 1.9 s, respectively. When actually driving in the simulator, for the scenarios of 0% CAVs and 50% CAVs on the freeway, the values of average headway gaps accepted by young drivers were estimated as 2.36 s and 1.53 s, respectively. For the elderly drivers driving the simulator, the average headway gap values accepted were estimated as 2.72 s and 1.55 s, respectively, in the 0% and 50% penetration rates on the freeway traffic. Analyses of the speed profiles of the vehicles showed the effects of the acceleration/deceleration of merging vehicles, for both young and older drivers, on the freeway vehicles, including a few cases of collision. Overall, it was observed that the subject drivers accepted shorter headway gaps for increased CAV penetration levels
    corecore