52 research outputs found

    A Magnetohydrodynamic Nonradiative Accretion Flow in Three Dimensions

    Get PDF
    We present a global magnetohydrodynamic (MHD) three dimensional simulation of a nonradiative accretion flow originating in a pressure supported torus. The evolution is controlled by the magnetorotational instability which produces turbulence. The flow forms a nearly Keplerian disk. The total pressure scale height in this disk is comparable to the vertical size of the initial torus. Gas pressure dominates only near the equator; magnetic pressure is more important in the surrounding atmosphere. A magnetically dominated bound outflow is driven from the disk. The accretion rate through the disk exceeds the final rate into the hole, and a hot torus forms inside 10 r_g. Hot gas, pushed up against the centrifugal barrier and confined by magnetic pressure, is ejected in a narrow, unbound, conical outflow. The dynamics are controlled by magnetic turbulence, not thermal convection, and a hydrodynamic alpha model is inadequate to describe the flow. The limitations of two dimensional MHD simulations are also discussed.Comment: 5 pages, 2 figures, submitted to ApJ Letters. For web version and mpeg animations see http://www.astro.virginia.edu/~jh8h/nraf

    Nanotechnology: Getting it Right the First Time

    Get PDF

    On the Nature of Angular Momentum Transport in Nonradiative Accretion Flows

    Get PDF
    The principles underlying a proposed class of black hole accretion models are examined. The flows are generally referred to as ``convection-dominated,'' and are characterized by inward transport of angular momentum by thermal convection and outward viscous transport, vanishing mass accretion, and vanishing local energy dissipation. We examine the viability of these ideas by explicitly calculating the leading order angular momentum transport of axisymmetric modes in magnetized, differentially rotating, stratified flows. The modes are destabilized by the generalized magnetorotational instability. There are no inward transporting modes at all unless the magnitude of the (imaginary) Brunt frequency is comparable to the epicyclic frequency, a condition requiring substantial levels of dissipation. When inward transporting modes do exist, they appear at long wavelengths, unencumbered by magnetic tension. Moreover, very general thermodynamic principles prohibit the complete recovery of irreversible dissipative energy losses, a central feature of convection-dominated models. Dissipation of the free energy of differential rotation inevitably requires outward angular momentum transport. Our results are in good agreement with global MHD simulations, which find significant levels of outward transport and energy dissipation, whether or not destabilizing entropy gradients are present.Comment: To appear in ApJ v. 573, 14 pages, 2 figures, AAS Latex macros 4.

    The magnetic nature of disk accretion onto black holes

    Get PDF
    Although disk accretion onto compact objects - white dwarfs, neutron stars, and black holes - is central to much of high energy astrophysics, the mechanisms which enable this process have remained observationally elusive. Accretion disks must transfer angular momentum for matter to travel radially inward onto the compact object. Internal viscosity from magnetic processes and disk winds can in principle both transfer angular momentum, but hitherto we lacked evidence that either occurs. Here we report that an X-ray-absorbing wind discovered in an observation of the stellar-mass black hole binary GRO J1655-40 must be powered by a magnetic process that can also drive accretion through the disk. Detailed spectral analysis and modeling of the wind shows that it can only be powered by pressure generated by magnetic viscosity internal to the disk or magnetocentrifugal forces. This result demonstrates that disk accretion onto black holes is a fundamentally magnetic process.Comment: 15 pages, 2 color figures, accepted for publication in Nature. Supplemental materials may be obtained by clicking http://www.astro.lsa.umich.edu/~jonmm/nature1655.p

    Estimating the health effects of greenhouse gas mitigation strategies: addressing parametric, model, and valuation challenges.

    Get PDF
    BACKGROUND: Policy decisions regarding climate change mitigation are increasingly incorporating the beneficial and adverse health impacts of greenhouse gas emission reduction strategies. Studies of such co-benefits and co-harms involve modeling approaches requiring a range of analytic decisions that affect the model output. OBJECTIVE: Our objective was to assess analytic decisions regarding model framework, structure, choice of parameters, and handling of uncertainty when modeling health co-benefits, and to make recommendations for improvements that could increase policy uptake. METHODS: We describe the assumptions and analytic decisions underlying models of mitigation co-benefits, examining their effects on modeling outputs, and consider tools for quantifying uncertainty. DISCUSSION: There is considerable variation in approaches to valuation metrics, discounting methods, uncertainty characterization and propagation, and assessment of low-probability/high-impact events. There is also variable inclusion of adverse impacts of mitigation policies, and limited extension of modeling domains to include implementation considerations. Going forward, co-benefits modeling efforts should be carried out in collaboration with policy makers; these efforts should include the full range of positive and negative impacts and critical uncertainties, as well as a range of discount rates, and should explicitly characterize uncertainty. We make recommendations to improve the rigor and consistency of modeling of health co-benefits. CONCLUSION: Modeling health co-benefits requires systematic consideration of the suitability of model assumptions, of what should be included and excluded from the model framework, and how uncertainty should be treated. Increased attention to these and other analytic decisions has the potential to increase the policy relevance and application of co-benefits modeling studies, potentially helping policy makers to maximize mitigation potential while simultaneously improving health

    Ancillary health effects of climate mitigation scenarios as drivers of policy uptake: a review of air quality, transportation and diet co-benefits modeling studies

    Get PDF
    Background: Significant mitigation efforts beyond the Nationally Determined Commitments (NDCs) coming out of the 2015 Paris Climate Agreement are required to avoid warming of 2 °C above pre-industrial temperatures. Health co-benefits represent selected near term, positive consequences of climate policies that can offset mitigation costs in the short term before the beneficial impacts of those policies on the magnitude of climate change are evident. The diversity of approaches to modeling mitigation options and their health effects inhibits meta-analyses and syntheses of results useful in policy-making. Methods/Design: We evaluated the range of methods and choices in modeling health co-benefits of climate mitigation to identify opportunities for increased consistency and collaboration that could better inform policy-making. We reviewed studies quantifying the health co-benefits of climate change mitigation related to air quality, transportation, and diet published since the 2009 Lancet Commission 'Managing the health effects of climate change' through January 2017. We documented approaches, methods, scenarios, health-related exposures, and health outcomes. Results/Synthesis: Forty-two studies met the inclusion criteria. Air quality, transportation, and diet scenarios ranged from specific policy proposals to hypothetical scenarios, and from global recommendations to stakeholder-informed local guidance. Geographic and temporal scope as well as validity of scenarios determined policy relevance. More recent studies tended to use more sophisticated methods to address complexity in the relevant policy system. Discussion: Most studies indicated significant, nearer term, local ancillary health benefits providing impetus for policy uptake and net cost savings. However, studies were more suited to describing the interaction of climate policy and health and the magnitude of potential outcomes than to providing specific accurate estimates of health co-benefits. Modeling the health co-benefits of climate policy provides policy-relevant information when the scenarios are reasonable, relevant, and thorough, and the model adequately addresses complexity. Greater consistency in selected modeling choices across the health co-benefits of climate mitigation research would facilitate evaluation of mitigation options particularly as they apply to the NDCs and promote policy uptake

    Thank You to Our 2018 Peer Reviewers

    Get PDF
    Public trust in science, effective science communication, and rapid and constructive response to authors about their submissions are of paramount importance to the scientific enterprise and indeed to society itself. This is really at the heart of peer review—providing thoughtful insights into both the scientific quality and importance of work, and also how it is communicated to other scientists and increasingly to a broader audience. Very few opportunities exist to acknowledge the mostly anonymous process of peer review, especially given the huge increase in review requests and the relatively mechanical nature of online reviewing platforms. We continue to be humbled by the time, effort, and careful insights that our colleagues share with each other through the process of peer review. In 2018, GeoHealth benefited from more than 83 reviews provided by 53 of our peers for papers submitted to the journal. Thank you all for your awesome efforts toward advancing geohealth now and for the future
    • …
    corecore