30 research outputs found
The Loss of HIF1α Leads to Increased Susceptibility to Cadmium-Chloride-Induced Toxicity in Mouse Embryonic Fibroblasts
Wild-type and HIF1α −/− MEF cells were used to determine the role of HIF1α in cadmium-induced toxicity. Cadmium treatment did not affect HIF1-mediated transcription but led to caspase activation and apoptotic cell death in wild-type and HIF1α −/− cells. Cadmium-induced cell death, however, was significantly higher in HIF1α −/− cells as compared to their wild-type counterparts. Increased cell death in the HIF1α −/− cells was correlated with lower metallothionein protein, elevated levels of reactive oxygen species, and decreased superoxide dismutase enzyme activity. The total and oxidized glutathione levels, and, correspondingly, lipid peroxidation levels were elevated in the null cells compared to wild-type cells, indicating increased antioxidant demand and greater oxidative stress. Overall, the results suggest that basal levels of HIF1α play a protective role against cadmium-induced cytotoxicity in mouse embryonic fibroblasts by maintaining metallothionein and antioxidant activity levels
The Loss of HIF1α Leads to Increased Susceptibility to Cadmium-Chloride-Induced Toxicity in Mouse Embryonic Fibroblasts
Wild-type and HIF1α − /− MEF cells were used to determine the role of HIF1α in cadmium-induced toxicity. Cadmium treatment did not affect HIF1-mediated transcription but led to caspase activation and apoptotic cell death in wild-type and HIF1α−/− cells. Cadmium-induced cell death, however, was significantly higher in HIF1α − /− cells as compared to their wild-type counterparts. Increased cell death in the HIF1α − /− cells was correlated with lower metallothionein protein, elevated levels of reactive oxygen species, and decreased superoxide dismutase enzyme activity. The total and oxidized glutathione levels, and, correspondingly, lipid peroxidation levels were elevated in the null cells compared to wild-type cells, indicating increased antioxidant demand and greater oxidative stress. Overall, the results suggest that basal levels of HIF1α play a protective role against cadmium-induced cytotoxicity in mouse embryonic fibroblasts by maintaining metallothionein and antioxidant activity levels
An Automated Method To Predict Mouse Gene and Protein Sequences Using Variant Data
With recent advances in sequencing technologies, the scientific community has begun to probe the potential genetic bases behind complex phenotypes in humans and model organisms. In many cases, the genomes of genetically distinct strains of model organisms, such as the mouse (Mus musculus), have not been fully sequenced. Here, we report on a tool designed to use single-nucleotide polymorphism (SNP) and insertion-deletion (indel) data to predict gene, mRNA, and protein sequences for up to 36 genetically distinct mouse strains. By automated querying of freely accessible databases through a graphical interface, the software requires no data and little computational experience. As a proof of concept, we predicted the gene and amino acid sequence of the aryl hydrocarbon receptor (Ahr) for all inbred mouse strains of which variant data were currently available through Mouse Genome Project. Predicted sequences were compared with fully sequenced genomes to show that the tool is effective in predicting gene and protein sequences
AHR-dependent changes in the mitochondrial proteome in response to 2,3,7,8-tetrachlorodibenzo-p-dioxin
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that is the principal regulator of a cell׳s response to many polyaromatic hydrocarbons, such as 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). To gain a better understanding of the impact of TCDD on the mitochondrial proteome, a stable isotope labeling by amino acids in cell culture (SILAC)-based proteomic analysis was performed. We used two mouse hepatoma cell lines that differ in AHR expression levels, hepa1c1c7 (AHR-expressing) and hepac12 (AHR-deficient). The cell lines were exposed to TCDD (10 nM) for 72 h; each treatment was assayed in triplicate and were analyzed as separate runs on the mass-spectrometer. Mitochondria were then isolated and mitochondrial proteins were separated by SDS-PAGE and subject to mass spectrometry. The data presented were collected from four independent SILAC experiments. Within each experiment, three isotopes were employed to compare protein ratios via mass-spectrometry: (1) light l-arginine/l-lysine HCl (Arg0, Lys0), (2) medium 15N4-l-arginin/13C6l-lysine HCl (Arg4, Lys6), and (3) heavy 13C615N4l-arginine/13C615N2l-lysine HCl (Arg10, Lys8). The raw data includes approximately 2500 annotated proteins. The datasets provided by this study can be a reference to other toxicologists investigating TCDD-induced mitochondrial dysfunction. The data presented here are associated with the research article, “Mitochondrial-targeted Aryl Hydrocarbon Receptor and the Impact of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin on Cellular Respiration and the Mitochondrial Proteome” (Hwang et al. (2016) [1]). Keywords: Proteomics, SILAC, TCDD, AHR, aryl hydrocarbon receptor, Mitochondri
Data of enzymatic activities of the electron transport chain and ATP synthase complexes in mouse hepatoma cells following exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)
Abstract2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is the most widely studied ligand of the aryl hydrocarbon receptor (AHR). The AHR-dependent TCDD-induced mitochondrial hyperpolarization (Tappenden et al., 2011) [1] and reduced oxygen consumption rate of intact mouse hepatoma cells (Huang et al., in press) [2] in the previous studies suggest that these alterations can be related to enzymatic activities of the electron transport chain (ETC) and ATP synthase in oxidative phosphorylation (OXPHOS) system. Here, we evaluated the activity of each complex in the OXPHOS system using in vitro enzymatic assays. The calculated enzymatic activity of each complex was normalized against the activity of citrate synthase. To combine each value from an independent experiment, normalized enzyme activities from cells exposed to TCDD were converted to fold changes via comparison to the activity relative to time-matched vehicle control. The averaged fold change for each treatment suggests more replicates are needed in order to clearly evaluate a difference between treatments
The Aryl-Hydrocarbon Receptor Protein Interaction Network (AHR-PIN) as Identified by Tandem Affinity Purification (TAP) and Mass Spectrometry
The aryl-hydrocarbon receptor (AHR), a ligand activated PAS superfamily transcription factor, mediates most, if not all, of the toxicity induced upon exposure to various dioxins, dibenzofurans, and planar polyhalogenated biphenyls. While AHR-mediated gene regulation plays a central role in the toxic response to dioxin exposure, a comprehensive understanding of AHR biology remains elusive. AHR-mediated signaling starts in the cytoplasm, where the receptor can be found in a complex with the heat shock protein of 90 kDa (Hsp90) and the immunophilin-like protein, aryl-hydrocarbon receptor-interacting protein (AIP). The role these chaperones and other putative interactors of the AHR play in the toxic response is not known. To more comprehensively define the AHR-protein interaction network (AHR-PIN) and identify other potential pathways involved in the toxic response, a proteomic approach was undertaken. Using tandem affinity purification (TAP) and mass spectrometry we have identified several novel protein interactions with the AHR. These interactions physically link the AHR to proteins involved in the immune and cellular stress responses, gene regulation not mediated directly via the traditional AHR:ARNT heterodimer, and mitochondrial function. This new insight into the AHR signaling network identifies possible secondary signaling pathways involved in xenobiotic-induced toxicity
Loss of Hypoxia-Inducible Factor 2 Alpha in the Lung Alveolar Epithelium of Mice Leads to Enhanced Eosinophilic Inflammation in Cobalt-Induced Lung Injury
This find is registered at Portable Antiquities of the Netherlands with number PAN-0004051