84 research outputs found
Uptake and effectiveness of the Children's Fitness Tax Credit in Canada: the rich get richer
<p>Abstract</p> <p>Background</p> <p>The Government of Canada implemented a Children's Fitness Tax Credit (CFTC) in 2007 which allows a non-refundable tax credit of up to $500 to register a child in an eligible physical activity (PA) program. The purposes of this study were to assess whether the awareness, uptake, and perceived effectiveness of this tax credit varied by household income among Canadian parents.</p> <p>Methods</p> <p>An internet-based panel survey was conducted in March 2009 with a representative sample of 2135 Canadians. Of those, parents with children aged 2 to 18 years of age (<it>n </it>= 1004) were asked if their child was involved in organized PA programs (including dance and sports), the associated costs to register their child in these programs, awareness of the CFTC, if they had claimed the CFTC for the tax year 2007, and whether they planned to claim it in the upcoming year. Parents were also asked if they believed the CFTC has lead to their child being more involved in PA programs.</p> <p>Results</p> <p>Among parents, 54.4% stated their child was in organized PA and 55.5% were aware of the CFTC. Parents in the lowest income quartile were significantly less aware and less likely to claim the CFTC than other income groups. Among parents who had claimed the CFTC, few (15.6%) believed it had increased their child's participation in PA programs.</p> <p>Conclusions</p> <p>More than half of Canadian parents with children have claimed the CFTC. However, the tax credit appears to benefit the wealthier families in Canada.</p
Out of Amazonia: Late Holocene Climate Change and the Tupi-Guarani Trans-Continental Expansion
This is the author accepted manuscript. The final version is available from SAGE Publications via the DOI in this recordThe late Holocene expansion of the Tupi-Guarani languages from southern Amazonia to SE South America constitutes one of the largest expansions of any linguistic family in the world, spanning ~ 4000 km between latitudes 0°S and 35°S at about 2500 yr B.P. However, the underlying reasons for this expansion are a matter of debate. Here, we compare continental-scale paleoecological, paleoclimate, and archaeological datasets, to examine the role of climate change in facilitating the expansion of this forest-farming culture. Because this expansion lies within the path of the South American Low-Level Jet, the key mechanism for moisture transport across lowland South America, we were able to explore the relationship between climate change, forest expansion, and the Tupi-Guarani. Our data synthesis shows broad synchrony between late Holocene increasing precipitation and southerly expansion of both tropical forest and Guarani archaeological sites – the southernmost branch of the Tupi-Guarani. We conclude that climate change likely facilitated expansion of the Guarani forest-farming culture by increasing the area of forested landscape that they could exploit, showing a prime example of ecological opportunism.The ideas and themes developed in this paper stem from a European Research Council project ‘Pre-Columbian Amazon-Scale Transformations’ (ERC-CoG 616179) to JI. The University of Reading’s ‘Centre for Past Climate Change’ funded a writing workshop for this paper. RS was funded by an NERC ‘Scenario’ DTP PhD award. JGS was funded by a CAPES PhD scholarship (Ministry of Education, Brazil). JFC and MLC received postdoctoral funding from the University of Reading and the Arts and Humanities Research Council, respectively
Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain
The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here
The yield of essential oils in Melaleuca alternifolia (Myrtaceae) is regulated through transcript abundance of genes in the MEP pathway
Medicinal tea tree (Melaleuca alternifolia) leaves contain large amounts of an essential oil, dominated by monoterpenes. Several enzymes of the chloroplastic methylerythritol phosphate (MEP) pathway are hypothesised to act as bottlenecks to the production of monoterpenes. We investigated, whether transcript abundance of genes encoding for enzymes of the MEP pathway were correlated with foliar terpenes in M. alternifolia using a population of 48 individuals that ranged in their oil concentration from 39 -122 mg x g DM(-1). Our study shows that most genes in the MEP pathway are co-regulated and that the expression of multiple genes within the MEP pathway is correlated with oil yield. Using multiple regression analysis, variation in expression of MEP pathway genes explained 87% of variation in foliar monoterpene concentrations. The data also suggest that sesquiterpenes in M. alternifolia are synthesised, at least in part, from isopentenyl pyrophosphate originating from the plastid via the MEP pathway
A Multitrait–Multimethod Analysis of the Construct Validity of Child Anxiety Disorders in a Clinical Sample
The present study examines the construct validity of separation anxiety disorder (SAD), social phobia (SoP), panic disorder (PD), and generalized anxiety disorder (GAD) in a clinical sample of children. Participants were 174 children, 6 to 17 years old (94 boys) who had undergone a diagnostic evaluation at a university hospital based clinic. Parent and child ratings of symptom severity were assessed using the Multidimensional Anxiety Scale for Children (MASC). Diagnostician ratings were obtained from the Anxiety Disorders Interview Schedule for Children and Parents (ADIS: C/P). Discriminant and convergent validity were assessed using confirmatory factor analytic techniques to test a multitrait–multimethod model. Confirmatory factor analyses supported the current classification of these child anxiety disorders. The disorders demonstrated statistical independence from each other (discriminant validity of traits), the model fit better when the anxiety syndromes were specified than when no specific syndromes were specified (convergent validity), and the methods of assessment yielded distinguishable, unique types of information about child anxiety (discriminant validity of methods). Using a multi-informant approach, these findings support the distinctions between childhood anxiety disorders as delineated in the current classification system, suggesting that disagreement between informants in psychometric studies of child anxiety measures is not due to poor construct validity of these anxiety syndromes
Human Endometrial CD98 Is Essential for Blastocyst Adhesion
BACKGROUND: Understanding the molecular basis of embryonic implantation is of great clinical and biological relevance. Little is currently known about the adhesion receptors that determine endometrial receptivity for embryonic implantation in humans. METHODS AND PRINCIPAL FINDINGS: Using two human endometrial cell lines characterized by low and high receptivity, we identified the membrane receptor CD98 as a novel molecule selectively and significantly associated with the receptive phenotype. In human endometrial samples, CD98 was the only molecule studied whose expression was restricted to the implantation window in human endometrial tissue. CD98 expression was restricted to the apical surface and included in tetraspanin-enriched microdomains of primary endometrial epithelial cells, as demonstrated by the biochemical association between CD98 and tetraspanin CD9. CD98 expression was induced in vitro by treatment of primary endometrial epithelial cells with human chorionic gonadotropin, 17-β-estradiol, LIF or EGF. Endometrial overexpression of CD98 or tetraspanin CD9 greatly enhanced mouse blastocyst adhesion, while their siRNA-mediated depletion reduced the blastocyst adhesion rate. CONCLUSIONS: These results indicate that CD98, a component of tetraspanin-enriched microdomains, appears to be an important determinant of human endometrial receptivity during the implantation window
Human Remains from the Pleistocene-Holocene Transition of Southwest China Suggest a Complex Evolutionary History for East Asians
BACKGROUND: Later Pleistocene human evolution in East Asia remains poorly understood owing to a scarcity of well described, reliably classified and accurately dated fossils. Southwest China has been identified from genetic research as a hotspot of human diversity, containing ancient mtDNA and Y-DNA lineages, and has yielded a number of human remains thought to derive from Pleistocene deposits. We have prepared, reconstructed, described and dated a new partial skull from a consolidated sediment block collected in 1979 from the site of Longlin Cave (Guangxi Province). We also undertook new excavations at Maludong (Yunnan Province) to clarify the stratigraphy and dating of a large sample of mostly undescribed human remains from the site. METHODOLOGY/PRINCIPAL FINDINGS: We undertook a detailed comparison of cranial, including a virtual endocast for the Maludong calotte, mandibular and dental remains from these two localities. Both samples probably derive from the same population, exhibiting an unusual mixture of modern human traits, characters probably plesiomorphic for later Homo, and some unusual features. We dated charcoal with AMS radiocarbon dating and speleothem with the Uranium-series technique and the results show both samples to be from the Pleistocene-Holocene transition: ∼14.3-11.5 ka. CONCLUSIONS/SIGNIFICANCE: Our analysis suggests two plausible explanations for the morphology sampled at Longlin Cave and Maludong. First, it may represent a late-surviving archaic population, perhaps paralleling the situation seen in North Africa as indicated by remains from Dar-es-Soltane and Temara, and maybe also in southern China at Zhirendong. Alternatively, East Asia may have been colonised during multiple waves during the Pleistocene, with the Longlin-Maludong morphology possibly reflecting deep population substructure in Africa prior to modern humans dispersing into Eurasia
Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria
Calcium and apatite granulations are demonstrated here to form in both human and
fetal bovine serum in response to the simple addition of either calcium or
phosphate, or a combination of both. These granulations are shown to represent
precipitating complexes of protein and hydroxyapatite (HAP) that display marked
pleomorphism, appearing as round, laminated particles, spindles, and films.
These same complexes can be found in normal untreated serum, albeit at much
lower amounts, and appear to result from the progressive binding of serum
proteins with apatite until reaching saturation, upon which the mineralo-protein
complexes precipitate. Chemically and morphologically, these complexes are
virtually identical to the so-called nanobacteria (NB) implicated in numerous
diseases and considered unusual for their small size, pleomorphism, and the
presence of HAP. Like NB, serum granulations can seed particles upon transfer to
serum-free medium, and their main protein constituents include albumin,
complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as
well as other calcium and apatite binding proteins found in the serum. However,
these serum mineralo-protein complexes are formed from the direct chemical
binding of inorganic and organic phases, bypassing the need for any biological
processes, including the long cultivation in cell culture conditions deemed
necessary for the demonstration of NB. Thus, these serum granulations may result
from physiologically inherent processes that become amplified with calcium
phosphate loading or when subjected to culturing in medium. They may be viewed
as simple mineralo-protein complexes formed from the deployment of
calcification-inhibitory pathways used by the body to cope with excess calcium
phosphate so as to prevent unwarranted calcification. Rather than representing
novel pathophysiological mechanisms or exotic lifeforms, these results indicate
that the entities described earlier as NB most likely originate from calcium and
apatite binding factors in the serum, presumably calcification inhibitors, that
upon saturation, form seeds for HAP deposition and growth. These calcium
granulations are similar to those found in organisms throughout nature and may
represent the products of more general calcium regulation pathways involved in
the control of calcium storage, retrieval, tissue deposition, and disposal
The impact of viral mutations on recognition by SARS-CoV-2 specific T cells.
We identify amino acid variants within dominant SARS-CoV-2 T cell epitopes by interrogating global sequence data. Several variants within nucleocapsid and ORF3a epitopes have arisen independently in multiple lineages and result in loss of recognition by epitope-specific T cells assessed by IFN-γ and cytotoxic killing assays. Complete loss of T cell responsiveness was seen due to Q213K in the A∗01:01-restricted CD8+ ORF3a epitope FTSDYYQLY207-215; due to P13L, P13S, and P13T in the B∗27:05-restricted CD8+ nucleocapsid epitope QRNAPRITF9-17; and due to T362I and P365S in the A∗03:01/A∗11:01-restricted CD8+ nucleocapsid epitope KTFPPTEPK361-369. CD8+ T cell lines unable to recognize variant epitopes have diverse T cell receptor repertoires. These data demonstrate the potential for T cell evasion and highlight the need for ongoing surveillance for variants capable of escaping T cell as well as humoral immunity.This work is supported by the UK Medical Research Council (MRC); Chinese Academy of Medical Sciences(CAMS) Innovation Fund for Medical Sciences (CIFMS), China; National Institute for Health Research (NIHR)Oxford Biomedical Research Centre, and UK Researchand Innovation (UKRI)/NIHR through the UK Coro-navirus Immunology Consortium (UK-CIC). Sequencing of SARS-CoV-2 samples and collation of data wasundertaken by the COG-UK CONSORTIUM. COG-UK is supported by funding from the Medical ResearchCouncil (MRC) part of UK Research & Innovation (UKRI),the National Institute of Health Research (NIHR),and Genome Research Limited, operating as the Wellcome Sanger Institute. T.I.d.S. is supported by a Well-come Trust Intermediate Clinical Fellowship (110058/Z/15/Z). L.T. is supported by the Wellcome Trust(grant number 205228/Z/16/Z) and by theUniversity of Liverpool Centre for Excellence in Infectious DiseaseResearch (CEIDR). S.D. is funded by an NIHR GlobalResearch Professorship (NIHR300791). L.T. and S.C.M.are also supported by the U.S. Food and Drug Administration Medical Countermeasures Initiative contract75F40120C00085 and the National Institute for Health Research Health Protection Research Unit (HPRU) inEmerging and Zoonotic Infections (NIHR200907) at University of Liverpool inpartnership with Public HealthEngland (PHE), in collaboration with Liverpool School of Tropical Medicine and the University of Oxford.L.T. is based at the University of Liverpool. M.D.P. is funded by the NIHR Sheffield Biomedical ResearchCentre (BRC – IS-BRC-1215-20017). ISARIC4C is supported by the MRC (grant no MC_PC_19059). J.C.K.is a Wellcome Investigator (WT204969/Z/16/Z) and supported by NIHR Oxford Biomedical Research Centreand CIFMS. The views expressed are those of the authors and not necessarily those of the NIHR or MRC
- …