214 research outputs found
Target organ expression and biomarker characterization of chemokine CCL21 in systemic sclerosis associated pulmonary arterial hypertension
Introduction: Systemic sclerosis (SSc) is a heterogenous disorder that appears to result from interplay between vascular pathologies, tissue fibrosis and immune processes, with evidence for deregulation of chemokines, which normally control immune trafficking. We recently identified altered levels of chemokine CCL21 in SSc associated pulmonary arterial hypertension (PAH). Here, we aimed to define target organ expression and biomarker characteristics of CCL21.
Materials and methods: To investigate target organ expression of CCL21, we performed immunohistochemistry (IHC) on explanted lung tissues from SSc-PAH patients. We assessed serum levels of CCL21 by ELISA and Luminex in two well-characterized SSc cohorts from Oslo (OUH, n=552) and Zurich (n=93) University hospitals and in 168 healthy controls. For detection of anti-CCl21 antibodies, we performed protein array analysis applying serum samples from SSc patients (n=300) and healthy controls. To characterize circulating CCL21 in SSc, we applied immunoprecipitation (IP) with antibodies detecting both full length and tailless and a custom-made antibody detecting only the C-terminal of CCL21. IP products were analyzed by SDS-PAGE/western blot and Mass spectrometry (MS).
Results: By IHC, we found that CCL21 was mainly expressed in the airway epithelial cells of SSc patients with PAH. In the analysis of serum levels of CCL21 we found weak correlation between Luminex and ELISA (r=0.515, p<0.001). Serum levels of anti-CCL21 antibodies were higher in SSc patients than in healthy controls (p<0.001), but only 5% of the SSc population were positive for anti-CCL21 antibodies in SSc, and we found no correlation between anti-CCl21 and serum levels of CCL21. By MS, we only identified peptides located within amino acid (aa) 23-102 of CCL21, indicating that CCL21 in SSc circulate as a truncated protein without the C-terminal tail.
Conclusion: This study demonstrates expression of CCL21 in epithelial lung tissue from SSc patients with PAH, and indicate that CCL21 in SSc circulates as a truncated protein. We extend previous observations indicating biomarker potential of CCL21, but find that Luminex is not suitable as platform for biomarker analyses. Finally, in vivo generated anti-CCL21 antibodies exist in SSc, but do not appear to modify serum CCL21 levels in patients with SSc-PAH
Comparison of vaccine-induced antibody neutralization against SARS-CoV-2 variants of concern following primary and booster doses of COVID-19 vaccines
The SARS-CoV-2 pandemic has, as of July 2022, infected more than 550 million people and caused over 6 million deaths across the world. COVID-19 vaccines were quickly developed to protect against severe disease, hospitalization and death. In the present study, we performed a direct comparative analysis of four COVID-19 vaccines: BNT162b2 (Pfizer/BioNTech), mRNA-1273 (Moderna), ChAdOx1 (Oxford/AstraZeneca) and Ad26.COV2.S (Johnson & Johnson/Janssen), following primary and booster vaccination. We focused on the vaccine-induced antibody-mediated immune response against multiple SARS-CoV-2 variants: wildtype, B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta) and B.1.1.529 (Omicron). The analysis included the quantification of total IgG levels against SARS-CoV-2 Spike, as well as the quantification of antibody neutralization titers. Furthermore, the study assessed the high-throughput ACE2 competition assay as a surrogate for the traditional pseudovirus neutralization assay. The results demonstrated marked differences in antibody-mediated immune responses. The lowest Spike-specific IgG levels and antibody neutralization titers were induced by one dose of the Ad26.COV2.S vaccine, intermediate levels by two doses of the BNT162b2 vaccine, and the highest levels by two doses of the mRNA-1273 vaccine or heterologous vaccination of one dose of the ChAdOx1 vaccine and a subsequent mRNA vaccine. The study also demonstrated that accumulation of SARS-CoV-2 Spike protein mutations was accompanied by a marked decline in antibody neutralization capacity, especially for B.1.1.529. Administration of a booster dose was shown to significantly increase Spike-specific IgG levels and antibody neutralization titers, erasing the differences between the vaccine-induced antibody-mediated immune response between the four vaccines. The findings of this study highlight the importance of booster vaccines and the potential inclusion of future heterologous vaccination strategies for broad protection against current and emerging SARS-CoV-2 variants
Levels of SARS-CoV-2 antibodies among fully vaccinated individuals with Delta or Omicron variant breakthrough infections
SARS-CoV-2 variants of concern have continuously evolved and may erode vaccine induced immunity. In this observational cohort study, we determine the risk of breakthrough infection in a fully vaccinated cohort. SARS-CoV-2 anti-spike IgG levels were measured before first SARS-CoV-2 vaccination and at day 21–28, 90 and 180, as well as after booster vaccination. Breakthrough infections were captured through the Danish National Microbiology database. incidence rate ratio (IRR) for breakthrough infection at time-updated anti-spike IgG levels was determined using Poisson regression. Among 6076 participants, 127 and 364 breakthrough infections due to Delta and Omicron variants were observed. IRR was 0.29 (95% CI 0.15–0.56) for breakthrough infection with the Delta variant, comparing the highest and lowest quintiles of anti-spike IgG. For Omicron, no significant differences in IRR were observed. These results suggest that quantitative level of anti-spike IgG have limited impact on the risk of breakthrough infection with Omicron
A retrospective study of PBDEs and PCBs in human milk from the Faroe Islands
BACKGROUND: Persistent organic pollutants (POPs) in wildlife and humans remain a cause of global concern, both in regard to traditional POPs, such as the polychlorinated biphenyls (PCBs), and emerging POPs, such as the polybrominated diphenyl ethers (PBDEs). To determine the time related concentrations, we analyzed human milk for these substances at three time points between 1987 and 1999. Polychlorobiphenylols (OH-PCBs), the dominating class of PCB metabolites, some of which are known to be strongly retained in human blood, were also included in the assessment. METHODS: We obtained milk from the Faroe Islands, where the population is exposed to POPs from their traditional diet (which may include pilot whale blubber). In addition to three pools, nine individual samples from the last time point were also analyzed. After cleanup, partitioning of neutral and acidic compounds, and separation of chemical classes, the analyses were carried out by gas chromatography and/or gas chromatography/mass spectrometry. RESULTS: Compared to other European populations, the human milk had high PCB concentrations, with pool concentrations of 2300 ng/g fat 1987, 1600 ng/g fat in 1994, and 1800 ng/g fat in 1999 (based on the sum of eleven major PCB congeners). The nine individual samples showed great variation in PCB concentrations. The OH-PCBs were present in trace amounts only, at levels of approximately 1% of the PCB concentrations. The PBDE concentrations showed a clear increase over time, and their concentrations in human milk from 1999 are among the highest reported so far from Europe, with results of individual samples ranging from 4.7 to 13 ng/g fat CONCLUSION: Although remote from pollution sources, the Faroe Islands show high concentrations of POPs in human milk, particularly PCBs, but also PBDEs. The PBDEs show increasing concentrations over time. The OH-PCB metabolites are poorly transferred to human milk, which likely is related to their acidic character
Association of hypoxia inducible factor-1 alpha gene polymorphism with both type 1 and type 2 diabetes in a Caucasian (Hungarian) sample
BACKGROUND: Hypoxia inducible factor-1 alpha (HIF-1alpha) is a transcription factor that plays an important role in neo-vascularisation, embryonic pancreas beta-cell mass development, and beta cell protection. Recently a non synonymous single nucleotide polymorphism (g.C45035T SNP, rs11549465) of HIF-1alpha gene, resulting in the p.P582S amino acid change has been shown to be associated with type 2 diabetes (T2DM) in a Japanese population. Our aim was to replicate these findings on a Caucasian (Hungarian) population, as well as to study whether this genetic effect is restricted to T2DM or can be expanded to diabetes in general. METHODS: A large Caucasian sample (N = 890) was recruited including 370 T2DM, 166 T1DM and 354 healthy subjects. Genotyping was validated by two independent methods: a restriction fragment analysis (RFLP) and a real time PCR using TaqMan probes. An overestimation of heterozygotes by RFLP was observed as a consequence of a nearby SNP (rs34005929). Therefore genotyping results of the justified TaqMan system were accepted. The measured genotype distribution corresponded to Hardy-Weinberg equilibrium (P = 0.740) RESULTS: As the TT genotype was extremely rare in the population (0.6% in clinical sample and 2.5% in controls), the genotypes were grouped as T absent (CC) and T present (CT and TT). Genotype-wise analysis showed a significant increase of T present group in controls (24.0%) as compared to patients (16.8%, P = 0.008). This genetic effect was demonstrated in the separated samples of type 1 (15.1%, P = 0.020), and also in type 2 (17.6%, P = 0.032) diabetes. Allele-wise analysis gave identical results showing a higher frequency of the T allele in the control sample (13.3%) than in the clinical sample (8.7%, P = 0.002) with similar results in type 1 (7.8%, P = 0.010) and type 2 (9.1%, P = 0.011) diabetes. The odds ratio for diabetes (either type 1 or 2) was 1.56 in the presence of the C allele. CONCLUSION: We confirmed the protective effect of a rare genetic variant of HIF-1alpha gene against type 2 diabetes in a Caucasian sample. Moreover we demonstrated a genetic contribution of the same polymorphism in type 1 diabetes as well, supporting a possible overlap in pathomechanism for T2DM and a T1DM
Assessing circadian rhythms in propofol PK and PD during prolonged infusion in ICU patients
This study evaluates possible circadian rhythms during prolonged propofol infusion in patients in the intensive care unit. Eleven patients were sedated with a constant propofol infusion. The blood samples for the propofol assay were collected every hour during the second day, the third day, and after the termination of the propofol infusion. Values of electroencephalographic bispectral index (BIS), arterial blood pressure, heart rate, blood oxygen saturation and body temperature were recorded every hour at the blood collection time points. A two-compartment model was used to describe propofol pharmacokinetics. Typical values of the central and peripheral volume of distribution and inter-compartmental clearance were VC = 27.7 l, VT = 801 l, and CLD = 2.73 l/min. The systolic blood pressure (SBP) was found to influence the propofol metabolic clearance according to Cl (l/min) = 2.65·(1 − 0.00714·(SBP − 135)). There was no significant circadian rhythm detected with respect to propofol pharmacokinetics. The BIS score was assessed as a direct effect model with EC50 equal 1.98 mg/l. There was no significant circadian rhythm detected within the BIS scores. We concluded that the light–dark cycle did not influence propofol pharmacokinetics and pharmacodynamics in intensive care units patients. The lack of night–day differences was also noted for systolic blood pressure, diastolic blood pressure and blood oxygenation. Circadian rhythms were detected for heart rate and body temperature, however they were severely disturbed from the pattern of healthy patients
Quantitative Analysis of Protein Phosphorylations and Interactions by Multi-Colour IP-FCM as an Input for Kinetic Modelling of Signalling Networks
BACKGROUND: To understand complex biological signalling mechanisms, mathematical modelling of signal transduction pathways has been applied successfully in last few years. However, precise quantitative measurements of signal transduction events such as activation-dependent phosphorylation of proteins, remains one bottleneck to this success. METHODOLOGY/PRINCIPAL FINDINGS: We use multi-colour immunoprecipitation measured by flow cytometry (IP-FCM) for studying signal transduction events to unrivalled precision. In this method, antibody-coupled latex beads capture the protein of interest from cellular lysates and are then stained with differently fluorescent-labelled antibodies to quantify the amount of the immunoprecipitated protein, of an interaction partner and of phosphorylation sites. The fluorescence signals are measured by FCM. Combining this procedure with beads containing defined amounts of a fluorophore allows retrieving absolute numbers of stained proteins, and not only relative values. Using IP-FCM we derived multidimensional data on the membrane-proximal T-cell antigen receptor (TCR-CD3) signalling network, including the recruitment of the kinase ZAP70 to the TCR-CD3 and subsequent ZAP70 activation by phosphorylation in the murine T-cell hybridoma and primary murine T cells. Counter-intuitively, these data showed that cell stimulation by pervanadate led to a transient decrease of the phospho-ZAP70/ZAP70 ratio at the TCR. A mechanistic mathematical model of the underlying processes demonstrated that an initial massive recruitment of non-phosphorylated ZAP70 was responsible for this behaviour. Further, the model predicted a temporal order of multisite phosphorylation of ZAP70 (with Y319 phosphorylation preceding phosphorylation at Y493) that we subsequently verified experimentally. CONCLUSIONS/SIGNIFICANCE: The quantitative data sets generated by IP-FCM are one order of magnitude more precise than Western blot data. This accuracy allowed us to gain unequalled insight into the dynamics of the TCR-CD3-ZAP70 signalling network
IGHV-associated methylation signatures more accurately predict clinical outcomes of chronic lymphocytic leukemia patients than IGHV mutation load
Currently, no molecular biomarker indices are used in standard care to make treatment decisions at diagnosis of chronic lymphocytic leukemia (CLL). We used Infinium MethylationEPIC array data from diagnostic blood samples of 114 CLL patients and developed a procedure to stratify patients based on methylation signatures associated with mutation load of the IGHV gene. This procedure allowed us to predict the time to treatment with a hazard ratio (HR) of 8.34 (95% confidence interval [CI]: 4.54-15.30), as opposed to a HR of 4.35 (95% CI: 2.60-7.28) using IGHV mutation status. Detailed evaluation of 17 cases for which the two classification procedures gave discrepant results showed that these cases were incorrectly classified using IGHV status. Moreover, methylation-based classification stratified patients with different overall survival (HR=1.82; 95% CI: 1.07-3.09), which was not possible using IGHV status. Furthermore, we assessed the performance of the developed classification procedure using published HumanMethylation450 array data for 159 patients for whom information on time to treatment, overall survival and relapse was available. Despite 450K array methylation data not containing all the biomarkers used in our classification procedure, methylation signatures again stratified patients with significantly better accuracy than did IGHV mutation load regarding all available clinical outcomes. Thus, stratification using IGHV-associated methylation signatures may provide better prognostic power than IGHV mutation status
- …