8,071 research outputs found
Connection Matrices and the Definability of Graph Parameters
In this paper we extend and prove in detail the Finite Rank Theorem for
connection matrices of graph parameters definable in Monadic Second Order Logic
with counting (CMSOL) from B. Godlin, T. Kotek and J.A. Makowsky (2008) and
J.A. Makowsky (2009). We demonstrate its vast applicability in simplifying
known and new non-definability results of graph properties and finding new
non-definability results for graph parameters. We also prove a Feferman-Vaught
Theorem for the logic CFOL, First Order Logic with the modular counting
quantifiers
On the exact learnability of graph parameters: The case of partition functions
We study the exact learnability of real valued graph parameters which are
known to be representable as partition functions which count the number of
weighted homomorphisms into a graph with vertex weights and edge
weights . M. Freedman, L. Lov\'asz and A. Schrijver have given a
characterization of these graph parameters in terms of the -connection
matrices of . Our model of learnability is based on D. Angluin's
model of exact learning using membership and equivalence queries. Given such a
graph parameter , the learner can ask for the values of for graphs of
their choice, and they can formulate hypotheses in terms of the connection
matrices of . The teacher can accept the hypothesis as correct, or
provide a counterexample consisting of a graph. Our main result shows that in
this scenario, a very large class of partition functions, the rigid partition
functions, can be learned in time polynomial in the size of and the size of
the largest counterexample in the Blum-Shub-Smale model of computation over the
reals with unit cost.Comment: 14 pages, full version of the MFCS 2016 conference pape
On Weakly Distinguishing Graph Polynomials
A univariate graph polynomial P(G;X) is weakly distinguishing if for almost
all finite graphs G there is a finite graph H with P(G;X)=P(H;X). We show that
the clique polynomial and the independence polynomial are weakly
distinguishing. Furthermore, we show that generating functions of induced
subgraphs with property C are weakly distinguishing provided that C is of
bounded degeneracy or tree-width. The same holds for the harmonious chromatic
polynomial
Weighted Automata and Monadic Second Order Logic
Let S be a commutative semiring. M. Droste and P. Gastin have introduced in
2005 weighted monadic second order logic WMSOL with weights in S. They use a
syntactic fragment RMSOL of WMSOL to characterize word functions (power series)
recognizable by weighted automata, where the semantics of quantifiers is used
both as arithmetical operations and, in the boolean case, as quantification.
Already in 2001, B. Courcelle, J.Makowsky and U. Rotics have introduced a
formalism for graph parameters definable in Monadic Second order Logic, here
called MSOLEVAL with values in a ring R. Their framework can be easily adapted
to semirings S. This formalism clearly separates the logical part from the
arithmetical part and also applies to word functions.
In this paper we give two proofs that RMSOL and MSOLEVAL with values in S
have the same expressive power over words. One proof shows directly that
MSOLEVAL captures the functions recognizable by weighted automata. The other
proof shows how to translate the formalisms from one into the other.Comment: In Proceedings GandALF 2013, arXiv:1307.416
Finiteness conditions for graph algebras over tropical semirings
Connection matrices for graph parameters with values in a field have been
introduced by M. Freedman, L. Lov{\'a}sz and A. Schrijver (2007). Graph
parameters with connection matrices of finite rank can be computed in
polynomial time on graph classes of bounded tree-width. We introduce join
matrices, a generalization of connection matrices, and allow graph parameters
to take values in the tropical rings (max-plus algebras) over the real numbers.
We show that rank-finiteness of join matrices implies that these graph
parameters can be computed in polynomial time on graph classes of bounded
clique-width. In the case of graph parameters with values in arbitrary
commutative semirings, this remains true for graph classes of bounded linear
clique-width. B. Godlin, T. Kotek and J.A. Makowsky (2008) showed that
definability of a graph parameter in Monadic Second Order Logic implies rank
finiteness. We also show that there are uncountably many integer valued graph
parameters with connection matrices or join matrices of fixed finite rank. This
shows that rank finiteness is a much weaker assumption than any definability
assumption.Comment: 12 pages, accepted for presentation at FPSAC 2014 (Chicago, June 29
-July 3, 2014), to appear in Discrete Mathematics and Theoretical Computer
Scienc
On the Displacement of Eigenvalues when Removing a Twin Vertex
Twin vertices of a graph have the same open neighbourhood. If they are not
adjacent, then they are called duplicates and contribute the eigenvalue zero to
the adjacency matrix. Otherwise they are termed co-duplicates, when they
contribute as an eigenvalue of the adjacency matrix. On removing a twin
vertex from a graph, the spectrum of the adjacency matrix does not only lose
the eigenvalue or . The perturbation sends a rippling effect to the
spectrum. The simple eigenvalues are displaced. We obtain a closed formula for
the characteristic polynomial of a graph with twin vertices in terms of two
polynomials associated with the perturbed graph. These are used to obtain
estimates of the displacements in the spectrum caused by the perturbation
- …