72 research outputs found

    Stress of different types increases the proinflammatory load in rheumatoid arthritis

    Get PDF
    Stress in patients with chronic inflammatory diseases such as rheumatoid arthritis (RA) stimulates proinflammatory mechanisms due to the defect of stress response systems (for example, the sympathetic nervous system and the hypothalamic–pituitary–adrenal axis). Among other mechanisms, the loss of sympathetic nerve fibers in inflamed tissue and inadequate cortisol secretion in relation to inflammation lead to an enhanced proinflammatory load in RA. Stress and the subsequent stimulation of inflammation (systemic and local) lead to increased sensitization of pain and further defects of stress response systems (vicious cycle of stress, pain, and inflammation)

    IFNGR1 single nucleotide polymorphisms in rheumatoid arthritis

    Get PDF
    On the basis of their biological function, potential genetic candidates for susceptibility to rheumatoid arthritis can be postulated. IFNGR1, encoding the ligand-binding chain of the receptor for interferon gamma, IFNγR1, is one such gene because interferon gamma is involved in the pathogenesis of the disease. In the coding sequence of IFNGR1, two nucleotide positions have been described to be polymorphic in the Japanese population. We therefore investigated the association of those two IFNGR1 single nucleotide polymorphisms with rheumatoid arthritis in a case-control study in a central European population. Surprisingly, however, neither position was polymorphic in the 364 individuals examined, indicating that IFNGR1 does not contribute to susceptibility to rheumatoid arthritis, at least in Caucasians

    Defective Suppressor Function of Human CD4+ CD25+ Regulatory T Cells in Autoimmune Polyglandular Syndrome Type II

    Get PDF
    In autoimmune polyglandular syndromes (APS), several organ-specific autoimmune diseases are clustered. Although APS type I is caused by loss of central tolerance, the etiology of APS type II (APS-II) is currently unknown. However, in several murine models, depletion of CD4+ CD25+ regulatory T cells (Tregs) causes a syndrome resembling human APS-II with multiple endocrinopathies. Therefore, we hypothesized that loss of active suppression in the periphery could be a hallmark of this syndrome. Tregs from peripheral blood of APS-II, control patients with single autoimmune endocrinopathies, and normal healthy donors showed no differences in quantity (except for patients with isolated autoimmune diseases), in functionally important surface markers, or in apoptosis induced by growth factor withdrawal. Strikingly, APS-II Tregs were defective in their suppressive capacity. The defect was persistent and not due to responder cell resistance. These data provide novel insights into the pathogenesis of APS-II and possibly human autoimmunity in general

    Expression and regulation of CCL18 in synovial fluid neutrophils of patients with rheumatoid arthritis

    Get PDF
    Rheumatoid arthritis (RA) is characterized by the recruitment of leukocytes and the accumulation of inflammatory mediators within the synovial compartment. Release of the chemokine CCL18 has been widely attributed to antigen-presenting cells, including macrophages and dendritic cells. This study investigates the production of CCL18 in polymorphonuclear neutrophils (PMN), the predominant cell type recruited into synovial fluid (SF). Microarray analysis, semiquantitative and quantitative reverse transcriptase polymerase chain reaction identified SF PMN from patients with RA as a novel source for CCL18 in diseased joints. Highly upregulated expression of other chemokine genes was observed for CCL3, CXCL8 and CXCL10, whereas CCL21 was downregulated. The chemokine receptor genes were differentially expressed, with upregulation of CXCR4, CCRL2 and CCR5 and downregulation of CXCR1 and CXCR2. In cell culture experiments, expression of CCL18 mRNA in blood PMN was induced by tumor necrosis factor α, whereas synthesis of CCL18 protein required additional stimulation with a combination of IL-10 and vitamin D3. In comparison, recruited SF PMN from patients with RA were sensitized for CCL18 production, because IL-10 alone was sufficient to induce CCL18 release. These results suggest a release of the T cell-attracting CCL18 by PMN when recruited to diseased joints. However, its production is tightly regulated at the levels of mRNA expression and protein synthesis

    GATA-3 in Human T Cell Helper Type 2 Development

    Get PDF
    The delineation of the in vivo role of GATA-3 in human T cell differentiation is a critical step in the understanding of molecular mechanisms directing human immune responses. We examined T cell differentiation and T cell–mediated effector functions in individuals lacking one functional GATA-3 allele. CD4 T cells from GATA-3+/− individuals expressed significantly reduced levels of GATA-3, associated with markedly decreased T helper cell (Th)2 frequencies in vivo and in vitro. Moreover, Th2 cell–mediated effector functions, as assessed by serum levels of Th2-dependent immunoglobulins (Igs; IgG4, IgE), were dramatically decreased, whereas the Th1-dependent IgG1 was elevated compared with GATA-3+/+ controls. Concordant with these data, silencing of GATA-3 in GATA-3+/+ CD4 T cells with small interfering RNA significantly reduced Th2 cell differentiation. Moreover, GATA-3 mRNA levels increased under Th2-inducing conditions and decreased under Th1-inducing conditions. Taken together, the data strongly suggest that GATA-3 is an important transcription factor in regulating human Th2 cell differentiation in vivo

    IgG autoantibodies bound to surfaces of necrotic cells and complement C4 comprise the phagocytosis promoting activity for necrotic cells of systemic lupus erythaematosus sera

    Get PDF
    Objective: Accumulation of dying and dead cells is thought to be involved in the etiopathogenesis of systemic lupus erythaematosus (SLE). Clearance has been described mainly for apoptotic cells; however, the knowledge of serum factors participating in the phagocytosis of necrotic cells is limited. Patients and methods: Sera from 18 patients with SLE and 10 normal healthy donors (NHD), and macrophages from 3 NHD were included. Autoantibodies and complement were measured by ELISA and phagocytosis by flow cytometry. Binding of serum IgG to necrotic cells was assessed by flow cytometry and confocal microscopy. Results: Sera from patients with SLE and NHD generally promoted the phagocytosis of necrotic cells by macrophages isolated from NHD. Five independent experiments with macrophages from three different NHD led to similar results. The sera from healthy controls displayed a homogeneous activity, whereas sera from patients with SLE showed a dichotomic behaviour. Only sera containing autoantibodies binding to the surfaces of necrotic cells and sufficient complement showed increased phagocytosis promoting activities. In SLE sera, C4 turned out to be the critical complement component in this process. Sera de-complemented by heat treatment strongly reduced phagocytosis of necrotic cells. Conclusions: Serum components influence the uptake of necrotic cells by phagocytosis competent macrophages from NHD. Complement is required for this process and autoantibodies binding to the surfaces of necrotic cells additionally promote their phagocytosis
    • …
    corecore