34 research outputs found

    Detection of heterozygous deletions and duplications in the MECP2 gene in Rett syndrome by Robust Dosage PCR (RD-PCR)

    Get PDF
    Fifty to eighty percent of Rett syndrome (RTT) cases have point mutations in the gene encoding methyl-CpG-binding protein-2 (MECP2). A fraction of MECP2 negative classical RTT patients has large heterozygous deletions. Robust Dosage PCR (RD-PCR) assays were developed as a rapid, convenient and accurate method to detect large heterozygous deletions and duplications. A blinded analysis was performed for 65 RTT cases from Portugal by RDPCR in the coding exons 2-4 of the MECP2 gene. Neither the patients with point mutations nor the non-classical RTT patients without point mutation had a deletion or duplication. One of remaining eight female patients with classical RTT without point mutation had a heterozygous deletion. This is the first report of a deletion spanning the entire MECP2 gene. The deletion was confirmed by southern blotting analysis and the deletion junction was localized 37kb upstream from exon 1 and 18kb downstream from exon 4. No duplications were detected. Our results suggest that RD-PCR is an accurate and convenient molecular diagnostic method

    Epidemiology of Doublet/Multiplet Mutations in Lung Cancers: Evidence that a Subset Arises by Chronocoordinate Events

    Get PDF
    BACKGROUND: Evidence strongly suggests that spontaneous doublet mutations in normal mouse tissues generally arise from chronocoordinate events. These chronocoordinate mutations sometimes reflect "mutation showers", which are multiple chronocoordinate mutations spanning many kilobases. However, little is known about mutagenesis of doublet and multiplet mutations (domuplets) in human cancer. Lung cancer accounts for about 25% of all cancer deaths. Herein, we analyze the epidemiology of domuplets in the EGFR and TP53 genes in lung cancer. The EGFR gene is an oncogene in which doublets are generally driver plus driver mutations, while the TP53 gene is a tumor suppressor gene with a more typical situation in which doublets derive from a driver and passenger mutation. METHODOLOGY/PRINCIPAL FINDINGS: EGFR mutations identified by sequencing were collected from 66 published papers and our updated EGFR mutation database (www.egfr.org). TP53 mutations were collected from IARC version 12 (www-p53.iarc.fr). For EGFR and TP53 doublets, no clearly significant differences in race, ethnicity, gender and smoking status were observed. Doublets in the EGFR and TP53 genes in human lung cancer are elevated about eight- and three-fold, respectively, relative to spontaneous doublets in mouse (6% and 2.3% versus 0.7%). CONCLUSIONS/SIGNIFICANCE: Although no one characteristic is definitive, the aggregate properties of doublet and multiplet mutations in lung cancer are consistent with a subset derived from chronocoordinate events in the EGFR gene: i) the eight frameshift doublets (present in 0.5% of all patients with EGFR mutations) are clustered and produce a net in-frame change; ii) about 32% of doublets are very closely spaced (< or =30 nt); and iii) multiplets contain two or more closely spaced mutations. TP53 mutations in lung cancer are very closely spaced (< or =30 nt) in 33% of doublets, and multiplets generally contain two or more very closely spaced mutations. Work in model systems is necessary to confirm the significance of chronocoordinate events in lung and other cancers

    Analysis of Cancer Mutation Signatures in Blood by a Novel Ultra-Sensitive Assay: Monitoring of Therapy or Recurrence in Non-Metastatic Breast Cancer

    Get PDF
    BACKGROUND: Tumor DNA has been shown to be present both in circulating tumor cells in blood and as fragments in the plasma of metastatic cancer patients. The identification of ultra-rare tumor-specific mutations in blood would be the ultimate marker to measure efficacy of cancer therapy and/or early recurrence. Herein we present a method for detecting microinsertions/deletions/indels (MIDIs) at ultra-high analytical selectivity. MIDIs comprise about 15% of mutations. METHODS AND FINDINGS: We describe MIDI-Activated Pyrophosphorolysis (MAP), a method of ultra-high analytical selectivity for detecting MIDIs. The high analytical selectivity of MAP is putatively due to serial coupling of two rare events: heteroduplex slippage and mis-pyrophosphorolysis. MAP generally has an analytical selectivity of one mutant molecule per >1 billion wild type molecules and an analytical sensitivity of one mutant molecule per reaction. The analytical selectivity of MAP is about 100,000-fold better than that of our previously described method of Pyrophosphorolysis Activated Polymerization-Allele specific amplification (PAP-A) for detecting MIDIs. The utility of this method is illustrated in two ways. 1) We demonstrate that two EGFR deletions commonly found in lung cancers are not present in tissue from four normal human lungs (10(7) copies of gDNA each) or in blood samples from 10 healthy individuals (10(7) copies of gDNA each). This is inconsistent, at least at an analytical sensitivity of 10(-7), with the hypotheses of (a) hypermutation or (b) strong selection of these growth factor-mutated cells during normal lung development leads to accumulation of pre-neoplastic cells with these EGFR mutations, which sometimes can lead to lung cancer in late adulthood. Moreover, MAP was used for large scale, high throughput "gene pool" analysis. No germline or early embryonic somatic mosaic mutation was detected (at a frequency of >0.3%) for the 15/18 bp EGFR deletion mutations in 6,400 individuals, suggesting that early embryonic EGFR somatic mutation is very rare, inconsistent with hypermutation or strong selection of these deletions in the embryo. 2) The second illustration of MAP utility is in personalized monitoring of therapy and early recurrence in cancer. Tumor-specific p53 mutations identified at diagnosis in the plasma of six patients with stage II and III breast cancer were undetectable after therapy in four women, consistent with clinical remission, and continued to be detected after treatment in two others, reflecting tumor progression. CONCLUSIONS: MAP has an analytical selectivity of one part per billion for detection of MIDIs and an analytical sensitivity of one molecule. MAP provides a general tool for monitoring ultra-rare mutations in tissues and blood. As an example, we show that the personalized cancer signature in six out of six patients with non-metastatic breast cancer can be detected and that levels over time are correlated with the clinical course of disease

    Missense Mutations in the MEFV Gene Are Associated with Fibromyalgia Syndrome and Correlate with Elevated IL-1β Plasma Levels

    Get PDF
    BACKGROUND:Fibromyalgia syndrome (FMS), a common, chronic, widespread musculoskeletal pain disorder found in 2% of the general population and with a preponderance of 85% in females, has both genetic and environmental contributions. Patients and their parents have high plasma levels of the chemokines MCP-1 and eotaxin, providing evidence for both a genetic and an immunological/inflammatory origin for the syndrome (Zhang et al., 2008, Exp. Biol. Med. 233: 1171-1180). METHODS AND FINDINGS:In a search for a candidate gene affecting inflammatory pathways, among five screened in our patient samples (100 probands with FMS and their parents), we found 10 rare and one common alleles for MEFV, a gene in which various compound heterozygous mutations lead to Familial Mediterranean Fever (FMF). A total of 2.63 megabases of genomic sequence of the MEFV gene were scanned by direct sequencing. The collection of rare missense mutations (all heterozygotes and tested in the aggregate) had a significant elevated frequency of transmission to affecteds (p = 0.0085, one-sided, exact binomial test). Our data provide evidence that rare missense variants of the MEFV gene are, collectively, associated with risk of FMS and are present in a subset of 15% of FMS patients. This subset had, on average, high levels of plasma IL-1beta (p = 0.019) compared to FMS patients without rare variants, unaffected family members with or without rare variants, and unrelated controls of unknown genotype. IL-1beta is a cytokine associated with the function of the MEFV gene and thought to be responsible for its symptoms of fever and muscle aches. CONCLUSIONS:Since misregulation of IL-1beta expression has been predicted for patients with mutations in the MEFV gene, we conclude that patients heterozygous for rare missense variants of this gene may be predisposed to FMS, possibly triggered by environmental factors

    SNPs in human miRNA genes affect biogenesis and function

    No full text
    MicroRNAs (miRNAs) are 21–25-nucleotide-long, noncoding RNAs that are involved in translational regulation. Most miRNAs derive from a two-step sequential processing: the generation of pre-miRNA from pri-miRNA by the Drosha/DGCR8 complex in the nucleus, and the generation of mature miRNAs from pre-miRNAs by the Dicer/TRBP complex in the cytoplasm. Sequence variation around the processing sites, and sequence variations in the mature miRNA, especially the seed sequence, may have profound affects on miRNA biogenesis and function. In the context of analyzing the roles of miRNAs in Schizophrenia and Autism, we defined at least 24 human X-linked miRNA variants. Functional assays were developed and performed on these variants. In this study we investigate the affects of single nucleotide polymorphisms (SNPs) on the generation of mature miRNAs and their function, and report that naturally occurring SNPs can impair or enhance miRNA processing as well as alter the sites of processing. Since miRNAs are small functional units, single base changes in both the precursor elements as well as the mature miRNA sequence may drive the evolution of new microRNAs by altering their biological function. Finally, the miRNAs examined in this study are X-linked, suggesting that the mutant alleles could be determinants in the etiology of diseases

    Evidence for X-chromosomal schizophrenia associated with microRNA alterations.

    Get PDF
    Schizophrenia is a severe disabling brain disease affecting about 1% of the population. Individual microRNAs (miRNAs) affect moderate downregulation of gene expression. In addition, components required for miRNA processing and/or function have also been implicated in X-linked mental retardation, neurological and neoplastic diseases, pointing to the wide ranging involvement of miRNAs in disease.To explore the role of miRNAs in schizophrenia, 59 microRNA genes on the X-chromosome were amplified and sequenced in males with (193) and without (191) schizophrenia spectrum disorders to test the hypothesis that ultra-rare mutations in microRNA collectively contribute to the risk of schizophrenia. Here we provide the first association of microRNA gene dysfunction with schizophrenia. Eight ultra-rare variants in the precursor or mature miRNA were identified in eight distinct miRNA genes in 4% of analyzed males with schizophrenia. One ultra-rare variant was identified in a control sample (with a history of depression) (8/193 versus 1/191, p = 0.02 by one-sided Fisher's exact test, odds ratio = 8.2). These variants were not found in an additional 7,197 control X-chromosomes.Functional analyses of ectopically expressed copies of the variant miRNA precursors demonstrate loss of function, gain of function or altered expression levels. While confirmation is required, this study suggests that microRNA mutations can contribute to schizophrenia

    Structural variants in the retinoid receptor genes in patients with schizophrenia and other psychiatric diseases

    No full text
    Retinoid receptors (RARs and RXRs) regulate brain morphogenesis and function. Defects in these receptors may contribute to schizophrenia or other psychiatric diseases. To test the hypothesis that genetic variants of the retinoid receptor genes may predispose to schizophrenia and other psychiatric diseases, the six RAR and RXR genes and a heterodimer partner, the NURR1 gene, were scanned in 100 schizophrenia patients, along with pilot studies in 20–24 patients with bipolar disorder (BPD), attention-deficit hyperactivity disorder (ADHD), autism, or alcoholism. A total of 5.4 megabases of genomic sequence was scanned. No variants affecting protein structure or expression (VAPSEs) were found in four of the genes. One uncommon missense variant was found in each of the RARβ, RARγ, and RXRγ genes. We conclude that structural variants in the RAR/RXR and NURR1 genes do not play a major role in the etiology of schizophrenia
    corecore