52 research outputs found

    Structure and Area Optimization of Flexible Heat Exchanger Networks

    No full text
    A novel method is outlined for flexible heat exchanger network synthesis including nonconvex problems. The presented method is sequentially implemented by two main steps: structure synthesis and area optimization; nevertheless, the optimization of heat exchanger areas can still react on the structure to gain the global optimal solution. The structure is initially synthesized at the nominal operating point and renewed by the topological union with the structure of the critical point and the improved heat transfer loops disconnection strategy. For area optimization, an iterative approach with strong robustness is proposed based on the influences of heat exchanger areas on flexibility index and total annual cost, respectively. The direction matrix method is employed to provide the operational flexibility of the network and the critical operating point. Two examples with nonconvex feasible regions have been studied, and the results well demonstrate the effectiveness of the proposed approach

    qPCR validation of RNA-seq result.

    No full text
    <p>Quantitative PCR for (A) <i>gli1</i>, (B) <i>ptch1</i>, and (C) <i>hsd11b1</i> was performed on Hh ligand treated and Hedgehog ligand and SFE co-treated TRAMPC2 cells. Transcripts concentrations were normalized to control. * indicates p<0.05. In the lower figure, transcripts concentrations of (A) <i>gli1</i>, (B) <i>ptch1</i>, and (C) <i>hsd11b1</i> are represented by quantified sequencing reads, in the form of counts-per-million-reads.</p

    Sutherlandia Extract alters genes in TRAMPC2 cells.

    No full text
    <p>(A) Differentially expressed genes in response to Sutherlandia extract treatment. Genes that are related to (B, C, D) are labeled. (B) Gene Ontology analysis of Sutherlandia responsive genes. (C, D) KEGG pathway analysis of Sutherlandia responsive genes.</p

    Heat map of Sutherlandia Extract altered Hedgehog-signaling pathway target genes expression.

    No full text
    <p>TRAMPC2 cell were treated with either Hh-CM or co-treated with Hh-CM and 80μg/ml SFE. Over 50% of Hh-responsive genes were repressed by SFE treatment. Gene expression values were represented by Log2 transformed normalized RNA-seq reads (Log2 count-per-million-reads) and color coded.</p

    Lipid Nanoparticles Composed of Quaternary Amine–Tertiary Amine Cationic Lipid Combination (QTsome) for Therapeutic Delivery of AntimiR-21 for Lung Cancer

    No full text
    microRNA-21 (miR-21) is an oncomiR that is frequently upregulated in human cancers. AntimiR-21 (AM-21) is an oligonucleotide complementary to miR-21 that is designed to inhibit its gene silencing activities. To facilitate efficient delivery of AM-21, a novel lipid nanoparticle formulation called QTsome, based on a combination of quaternary amine and tertiary amine cationic lipids, with a distinctive pH-responsive profile, was developed. QTsome/AM-21 comprising DODMA/DOTAP/DOPC/CHOL/mPEG-DPPE and AM-21 oligonucleotide exhibited a mean particle diameter of below 150 nm, moderate zeta potential (+13.2 mV), excellent colloidal stability, and high drug loading efficiency (above 80%). In vitro study showed QTsome/AM-21 induced upregulation of miR-21 targets, including PTEN and DDAH1, in A549 cells while increasing their sensitivity toward paclitaxel (PTX). Finally, tumor regression, prolonged survival, and miR-21 target upregulation were demonstrated in an A549 xenograft mouse model. These data suggest that QTsome/AM-21 warrants further evaluation as an anticancer agent
    corecore