99,055 research outputs found

    k-Nearest Neighbor Classification over Semantically Secure Encrypted Relational Data

    Full text link
    Data Mining has wide applications in many areas such as banking, medicine, scientific research and among government agencies. Classification is one of the commonly used tasks in data mining applications. For the past decade, due to the rise of various privacy issues, many theoretical and practical solutions to the classification problem have been proposed under different security models. However, with the recent popularity of cloud computing, users now have the opportunity to outsource their data, in encrypted form, as well as the data mining tasks to the cloud. Since the data on the cloud is in encrypted form, existing privacy preserving classification techniques are not applicable. In this paper, we focus on solving the classification problem over encrypted data. In particular, we propose a secure k-NN classifier over encrypted data in the cloud. The proposed k-NN protocol protects the confidentiality of the data, user's input query, and data access patterns. To the best of our knowledge, our work is the first to develop a secure k-NN classifier over encrypted data under the semi-honest model. Also, we empirically analyze the efficiency of our solution through various experiments.Comment: 29 pages, 2 figures, 3 tables arXiv admin note: substantial text overlap with arXiv:1307.482

    Secure k-Nearest Neighbor Query over Encrypted Data in Outsourced Environments

    Full text link
    For the past decade, query processing on relational data has been studied extensively, and many theoretical and practical solutions to query processing have been proposed under various scenarios. With the recent popularity of cloud computing, users now have the opportunity to outsource their data as well as the data management tasks to the cloud. However, due to the rise of various privacy issues, sensitive data (e.g., medical records) need to be encrypted before outsourcing to the cloud. In addition, query processing tasks should be handled by the cloud; otherwise, there would be no point to outsource the data at the first place. To process queries over encrypted data without the cloud ever decrypting the data is a very challenging task. In this paper, we focus on solving the k-nearest neighbor (kNN) query problem over encrypted database outsourced to a cloud: a user issues an encrypted query record to the cloud, and the cloud returns the k closest records to the user. We first present a basic scheme and demonstrate that such a naive solution is not secure. To provide better security, we propose a secure kNN protocol that protects the confidentiality of the data, user's input query, and data access patterns. Also, we empirically analyze the efficiency of our protocols through various experiments. These results indicate that our secure protocol is very efficient on the user end, and this lightweight scheme allows a user to use any mobile device to perform the kNN query.Comment: 23 pages, 8 figures, and 4 table

    Tax Increment Financing for Optimal Open Space Preservation: an Economic Inquiry

    Get PDF
    The public has increasingly demonstrated a strong support for open space preservation. Questions left to local policy-makers are how local governments can finance preservation of open space in a politically desirable way, whether there exists an optimal level of open space that can maximize the net value of developable land in a community and that can also be financed politically desirably, and what is the effect of the spatial configuration of preserved open space when local residents perceive open space amenities differ spatially. Our economic model found the condition for the existence of an optimal level of open space is not very restrictive, the increased tax revenue generated by the capitalization of open space amenity into property value can fully cover the cost of preserving this optimal level of open space under a weak condition, and being evenly distributed and centrally located is very likely to characterize the optimal spatial configuration of preserved open space in terms of net social value and the capacity of tax increment financing.Environmental Economics and Policy,

    Mean squared error of empirical predictor

    Full text link
    The term ``empirical predictor'' refers to a two-stage predictor of a linear combination of fixed and random effects. In the first stage, a predictor is obtained but it involves unknown parameters; thus, in the second stage, the unknown parameters are replaced by their estimators. In this paper, we consider mean squared errors (MSE) of empirical predictors under a general setup, where ML or REML estimators are used for the second stage. We obtain second-order approximation to the MSE as well as an estimator of the MSE correct to the same order. The general results are applied to mixed linear models to obtain a second-order approximation to the MSE of the empirical best linear unbiased predictor (EBLUP) of a linear mixed effect and an estimator of the MSE of EBLUP whose bias is correct to second order. The general mixed linear model includes the mixed ANOVA model and the longitudinal model as special cases

    Distributed Adaptive Networks: A Graphical Evolutionary Game-Theoretic View

    Full text link
    Distributed adaptive filtering has been considered as an effective approach for data processing and estimation over distributed networks. Most existing distributed adaptive filtering algorithms focus on designing different information diffusion rules, regardless of the nature evolutionary characteristic of a distributed network. In this paper, we study the adaptive network from the game theoretic perspective and formulate the distributed adaptive filtering problem as a graphical evolutionary game. With the proposed formulation, the nodes in the network are regarded as players and the local combiner of estimation information from different neighbors is regarded as different strategies selection. We show that this graphical evolutionary game framework is very general and can unify the existing adaptive network algorithms. Based on this framework, as examples, we further propose two error-aware adaptive filtering algorithms. Moreover, we use graphical evolutionary game theory to analyze the information diffusion process over the adaptive networks and evolutionarily stable strategy of the system. Finally, simulation results are shown to verify the effectiveness of our analysis and proposed methods.Comment: Accepted by IEEE Transactions on Signal Processin
    corecore