555 research outputs found

    Bis(μ-3-hydroxy­benzoato)-κ2 O 1:O 3;κ2 O 3:O 1-bis­[bis­(1H-benzimidazole-κN 3)(3-hydroxy­benzoato-κO)nickel(II)] bis­(1H-benzimidazole-κN 3)bis­(3-hy­droxy­benzoato-κO 1)nickel(II) hexa­hydrate

    Get PDF
    The title compound, [Ni2(C7H5O3)4(C7H6N2)4][Ni(C7H5O3)2(C7H6N2)2]·6H2O, is a mononuclear/dinuclear nickel(II) cocrystal, the two mol­ecular species inter­acting through hydrogen bonds that involve the uncoordinated water mol­ecules. In the mononuclear species, the NiII ion, located on an inversion center, is coordinated by two 1H-benzimidazole (bzim) ligands and two 3-hydroxy­benzoate (hba) anions in a square-planar geometry. In the centrosymmetric dinuclear species, the NiII ion is coordinated by two bzim ligands and three hba anions in a square-pyramidal geometry; of the two independent hba anions, one bridges two NiII ions with both carboxylate and hydroxyl groups whereas the other coordin­ates in a unidentate manner to the NiII ion. The apical Ni—Ohydrox­yl bond is 0.39 Å longer than the basal Ni—Ocarbox­yl bonds. The face-to-face separation of 3.326 (9) Å indicates the existence of π–π stacking between parallel bzim ligands of adjacent dinuclear entities. Extensive N—H⋯O and O—H⋯O hydrogen bonds help to stabilize the crystal structure

    New application of decomposition of U(1) gauge potential:Aharonov-Bohm effect and Anderson-Higgs mechanism

    Full text link
    In this paper we study the Aharonov-Bohm (A-B) effect and Anderson-Higgs mechanism in Ginzburg-Landau model of superconductors from the perspective of the decomposition of U(1) gauge potential. By the Helmholtz theorem, we derive exactly the expression of the transverse gauge potential A⃗⊥\vec{A}_\perp in A-B experiment, which is gauge-invariant and physical. For the case of a bulk superconductor, we find that the gradient of the total phase field θ\theta provides the longitudinal component A⃗∥{\vec A}_{\parallel}, which reflects the Anderson-Higgs mechanism. For the case of a superconductor ring, the gradient of the longitudinal phase field θ1\theta_1 provides the longitudinal component A⃗∥{\vec A}_{\parallel}, while the transverse phase field θ2\theta_2 produces new physical effects such as the flux quantization inside a superconducting ring.Comment: 6 pages, no figures, final version to appear in Modern Physics Letters

    First-principles prediction of coexistence of magnetism and ferroelectricity in rhombohedral Bi2FeTiO6

    Full text link
    First principles calculations based on the density functional theory within the local spin density approximation plus U(LSDA+U)scheme, show rhombohedral Bi2_2FeTiO6_6 is a potential multiferroic in which the magnetism and ferroelectricity coexist . A ferromagnetic configuration with magnetic moment of 4 μB\mu_B per formula unit have been reported with respect to the minimum total energy. Spontaneous polarization of 27.3 μ\mu C/cm2^2, caused mainly by the ferroelectric distortions of Ti, was evaluated using the berry phase approach in the modern theory of polarization. The Bi-6s stereochemical activity of long-pair and the `d0^0-ness' criterion in off-centring of Ti were coexisting in the predicted new system. In view of the oxidation state of Bi3+^{3+},Fe2+^{2+},Ti4+^{4+}, and O2−^{2-} from the orbital-resolved density of states of the Bi-6p, Fe-3d,Ti-3d, and O-2p states,the valence state of Bi2_2FeTiO6_6 in the rhombohedral phase was found to be Bi2_23+^{3+}Fe2+^{2+}Ti4+^{4+}O6_6.Comment: 22 pages, 9 figures. submitted to Physics Letters

    Mitochondrial matR sequences help to resolve deep phylogenetic relationships in rosids

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rosids are a major clade in the angiosperms containing 13 orders and about one-third of angiosperm species. Recent molecular analyses recognized two major groups (i.e., fabids with seven orders and malvids with three orders). However, phylogenetic relationships within the two groups and among fabids, malvids, and potentially basal rosids including Geraniales, Myrtales, and Crossosomatales remain to be resolved with more data and a broader taxon sampling. In this study, we obtained DNA sequences of the mitochondrial <it>matR </it>gene from 174 species representing 72 families of putative rosids and examined phylogenetic relationships and phylogenetic utility of <it>matR </it>in rosids. We also inferred phylogenetic relationships within the "rosid clade" based on a combined data set of 91 taxa and four genes including <it>matR</it>, two plastid genes (<it>rbcL</it>, <it>atpB</it>), and one nuclear gene (18S rDNA).</p> <p>Results</p> <p>Comparison of mitochondrial <it>matR </it>and two plastid genes (<it>rbcL </it>and <it>atpB</it>) showed that the synonymous substitution rate in <it>matR </it>was approximately four times slower than those of <it>rbcL </it>and <it>atpB</it>; however, the nonsynonymous substitution rate in <it>matR </it>was relatively high, close to its synonymous substitution rate, indicating that the <it>matR </it>has experienced a relaxed evolutionary history. Analyses of our <it>matR </it>sequences supported the monophyly of malvids and most orders of the rosids. However, fabids did not form a clade; instead, the COM clade of fabids (Celastrales, Oxalidales, Malpighiales, and Huaceae) was sister to malvids. Analyses of the four-gene data set suggested that Geraniales and Myrtales were successively sister to other rosids, and that Crossosomatales were sister to malvids.</p> <p>Conclusion</p> <p>Compared to plastid genes such as <it>rbcL </it>and <it>atpB</it>, slowly evolving <it>matR </it>produced less homoplasious but not less informative substitutions. Thus, <it>matR </it>appears useful in higher-level angiosperm phylogenetics. Analysis of <it>matR </it>alone identified a novel deep relationship within rosids, the grouping of the COM clade of fabids and malvids, which was not resolved by any previous molecular analyses but recently suggested by floral structural features. Our four-gene analysis supported the placements of Geraniales, Myrtales at basal nodes of the rosid clade and placed Crossosomatales as sister to malvids. We also suggest that the core part of rosids should include fabids, malvids and Crossosomatales.</p
    • …
    corecore