5 research outputs found

    Uncovering the Fecal Bacterial Communities of Sympatric Sika Deer (Cervus nippon) and Wapiti (Cervus canadensis)

    No full text
    Microbial symbiotic associations may be beneficial, neutral, or harmful to the host. Symbionts exploit the host space and nutrition or use hosts as carriers to spread to other environments. In order to investigate the fecal bacterial communities of wild sika deer (Cervus nippon) and wapiti (Cervus canadensis), this study aimed to sequence and explore the composition of, and similarity between, the fecal microbiota of sika deer and wapiti using high-throughput sequencing. The composition and relative abundance of fecal microbiota, alpha diversity, and differences in beta diversity between the two species were analyzed. We found that no pathogenic bacteria were present in large quantities in the hosts. The dominant bacterial phyla found in the two deer species were similar and included Firmicutes, Bacteroidetes, Proteobacteria, and Spirochaetes. Moreover, the deer also shared similar dominant genera, including the Rikenellaceae RC9 gut group, Ruminococcaceae_UCG-010, Ruminococcaceae_UCG-005, and Bacteroides. These results demonstrate that the sika deer and wapiti share a similar fecal microbiotal structure, probably due to their common diet and living environment, but there was some evidence of a difference at the species level. These analyses provide new insights into the health status of deer populations outside protected environments and offer a scientific framework for monitoring the health conditions of sika deer and wapiti

    Characterization of the gut microbiota in the golden takin (Budorcas taxicolor bedfordi)

    No full text
    Abstract The gut microbiota of mammals is a complex ecosystem, which is essential for maintaining gut homeostasis and the host’s health. The high throughput sequencing allowed us to gain a deeper insight into the bacterial structure and diversity. In order to improve the health status of the endangered golden takins, we first characterized the fecal microbiota of healthy golden takins using high throughput sequencing of the 16S rRNA genes V3–V4 hypervariable regions. Our results showed that, Firstly, the gut microbiota community comprised 21 phyla, 40 classes, 62 orders, 96 families, and 216 genera. Firmicutes (67.59%) was the most abundant phylum, followed by Bacteroidetes (23.57%) and Proteobacteria (2.37%). Secondly, the golden takin maintained higher richness in spring than in the winter while community diversity and evenness was not significantly different. Thirdly, four female golden takins demonstrated highly similar microbiota and the five golden takin males had relatively highly similar microbiota. All of our results might indicate that the fecal microbiota of golden takins were influenced by the season and the animal’s sex. The findings provided theoretical basis regarding the gut microbiota of golden takins and may offer new insights to protect this endangered species

    A chromosome-level genome assembly of the yellow-throated marten (Martes flavigula)

    No full text
    Abstract The yellow-throated marten (Martes flavigula) is a medium-sized carnivore that is widely distributed across much of Asia and occupies an extensive variety of habitats. We reported a high-quality genome assembly of this organism that was generated using Oxford Nanopore and Hi-C technologies. The final genome sequences contained 215 contigs with a total size of 2,449.15 Mb and a contig N50 length of 68.60 Mb. Using Hi-C analysis, 2,419.20 Mb (98.78%) of the assembled sequences were anchored onto 21 linkage groups. Merqury evaluation suggested that the genome was 94.95% complete with a QV value of 43.75. Additionally, the genome was found to comprise approximately 39.74% repeat sequences, of which long interspersed elements (LINE) that accounted for 26.13% of the entire genome, were the most abundant. Of the 20,464 protein-coding genes, prediction and functional annotation was successfully performed for 20,322 (99.31%) genes. The high-quality, chromosome-level genome of the marten reported in this study will serve as a reference for future studies on genetic diversity, evolution, and conservation biology
    corecore