82 research outputs found

    The effect of peak serum estradiol level during ovarian stimulation on cumulative live birth and obstetric outcomes in freeze-all cycles

    Get PDF
    ObjectiveTo determine whether the peak serum estradiol (E2) level during ovarian stimulation affects the cumulative live birth rate (CLBR) and obstetric outcomes in freeze-all cycles.MethodsThis retrospective cohort study involved patients who underwent their first cycle of in vitro fertilization followed by a freeze-all strategy and frozen embryo transfer cycles between January 2014 and June 2019 at a tertiary care center. Patients were categorized into four groups according to quartiles of peak serum E2 levels during ovarian stimulation (Q1-Q4). The primary outcome was CLBR. Secondary outcomes included obstetric and neonatal outcomes of singleton and twin pregnancies. Poisson or logistic regression was applied to control for potential confounders for outcome measures, as appropriate. Generalized estimating equations were used to account for multiple cycles from the same patient for the outcome of CLBR.Result(s)A total of 11237 patients were included in the analysis. Cumulatively, live births occurred in 8410 women (74.8%). The live birth rate (LBR) and CLBR improved as quartiles of peak E2 levels increased (49.7%, 52.1%, 54.9%, and 56.4% for LBR; 65.1%, 74.3%, 78.4%, and 81.6% for CLBR, from the lowest to the highest quartile of estradiol levels, respectively, P<0.001). Such association remained significant for CLBR after accounting for potential confounders in multivariable regression models, whereas the relationship between LBR and peak E2 levels did not reach statistical significance. In addition, no significant differences were noticed in adverse obstetric and neonatal outcomes (gestational diabetes mellitus, pregnancy-induced hypertension, preeclampsia, placental disorders, preterm birth, low birthweight, and small for gestational age) amongst E2 quartiles for either singleton or twin live births, both before and after adjustment.ConclusionIn freeze-all cycles, higher peak serum E2 levels during ovarian stimulation were associated with increased CLBR, without increasing the risks of adverse obstetric and neonatal outcomes

    Preliminary Evaluation of the Sural Nerve Using 22-MHz Ultrasound: A New Approach for Evaluation of Diabetic Cutaneous Neuropathy

    Get PDF
    Background: The application of 22-MHz high-frequency ultrasound allows for visualization of the inner part of the sural nerve. The aim of this study was to evaluate the morphological changes of sural nerves in patients with type 2 diabetes mellitus using ultrasound. Materials and Methods: The thickness/width (T/W) ratio, the cross-sectional area (CSA) of the sural nerves and the maximum thickness (MT) of the nerve fascicles were measured in 100 patients with type 2 diabetes mellitus and 50 healthy volunteers using 22-MHz ultrasound. Receiver operating characteristic (ROC) curves were plotted to determine the optimal cut-off values as well as the sensitivities and specificities. All parameters were significantly different between the subject and control groups. The ROC curves demonstrated that the MT was the most predictive of diabetic cutaneous neuropathy, with an optimal cut-off value of 0.365 mm that yielded a sensitivity of 90.3 % and a specificity of 87.7%. Conclusions: The results of this study suggest that 22-MHz ultrasound may be a valuable tool for evaluating diabeti

    Influence of Sulfate-Reducing Bacteria on the Corrosion Residual Strength of an AZ91D Magnesium Alloy

    No full text
    In this paper, the corrosion residual strength of the AZ91D magnesium alloy in the presence of sulfate-reducing bacteria is studied. In the experiments, the chemical composition of corrosion film was analyzed by a scanning electron microscope with energy dispersive X-ray spectroscopy. In addition, a series of instruments, such as scanning electronic microscope, pH-meter and an AG-10TA materials test machine, were applied to test and record the morphology of the corrosion product, fracture texture and mechanical properties of the AZ91D magnesium alloy. The experiments show that the sulfate-reducing bacteria (SRB) play an important role in the corrosion process of the AZ91D magnesium alloy. Pitting corrosion was enhanced by sulfate-reducing bacteria. Corrosion pits are important defects that could lead to a significant stress concentration in the tensile process. As a result, sulfate-reducing bacteria influence the corrosion residual strength of the AZ91D magnesium alloy by accelerating pitting corrosion

    Compressive Property and Energy Absorption Capacity of Mg-Ceramic-Ni Foamsat Various Temperatures

    No full text
    Mg–Ceramic–Ni hybrid foams were fabricated via continuousdepositing micro-arc oxidation (MAO) ceramic coating and electroless Ni coating on the surface of the AZ91D foam struts. Mechanical tests from room temperature (RT) to 300 °C were carried out to evaluate the compressive properties and energy absorption capacities of two types of foams, i.e., AZ91D alloy foams and corresponding hybrid foams. The effect of composite coatings and test temperature on the compressive property of the foams was studied. The experimental results show that the MAOand Ni coatings enhance the Mg foam struts, resulting in high compressive strength and energy absorption capacity at each testing temperature. In addition, the compressive properties are also depending on testing temperature. The different mechanical responses of the composite foams under various temperature conditions are mainly attributed to the different deformation behaviors and failure modes of the foam struts, which are confirmed by scanning electron microscopy (SEM) observation

    Effect of Nanofiller on the Mechanical Properties of Carbon Fiber/Epoxy Composites under Different Aging Conditions

    No full text
    In this study, carbon fiber-reinforced epoxy composites (CFRPs) containing multi-walled carbon nanotube (MWCNT) and halloysite nanoclay were fabricated. The effects of these nanofillers (MWCNT and nanoclay) on the tensile and flexural properties of the CFRPs under different aging conditions were studied. These aging conditions included water soaking, acid soaking, alkali soaking, and thermal shock cycling. The experimental results showed that, after accelerated aging, the mechanical performance of the CFRPs decreased. The performance degradation in the soaking environment depends on the immersion temperature and immersion medium. High-temperature accelerated the aging behavior of the CFRPs, resulting in low strength and modulus. The CFRPs were more vulnerable to acid soaking and alkali soaking than water soaking. The MWCNT and halloysite nanoclay are beneficial to improve the immersion aging resistance of the CFRPs, and the additions of nanofillers delayed the performance degradation under immersion aging conditions. However, nanofillers hardly improve the aging resistance of the CFRPs under thermal shock cycling condition. The fracture morphologies were observed by scanning electron microscopy (SEM) to reflect the failure modes of the CFRPs under various aging conditions. Differential scanning calorimeter (DSC) and fourier transform infrared (FTIR) spectroscopy tests were used to estimate the changes in the chemical structures and properties of epoxy resin and its composites under different conditions

    Compressive Properties of Open-Cell Al Hybrid Foams at Different Temperatures

    No full text
    Hybrid Ni/Al foams were fabricated by depositing electroless Ni–P (EN) coatings on open-cell Al foam substrate to obtain enhanced mechanical properties. The microstructure, chemical components and phases of the hybrid foams were observed and analyzed by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and X-ray diffraction (XRD), respectively. The mechanical properties of the foams were studied by compressive tests at different temperatures. The experiment results show that the coating is mainly composed of Ni and P elements. There was neither defect at the interface nor crack in the coatings, indicating that the EN coatings had fine adhesion to the Al substrate. The compressive strengths and energy absorption capacities of the as-received foam and hybrid foams decrease with the increasing testing temperatures, but the hybrid foams exhibit a lower decrement rate than the as-received foam. This might be attributed to the different failure mechanisms at different testing temperatures, which is conformed by fractography observation

    Sound Absorption Characteristics of Aluminum Foams Treated by Plasma Electrolytic Oxidation

    No full text
    Open-celled aluminum foams with different pore sizes were fabricated. A plasma electrolytic oxidation (PEO) treatment was applied on the aluminum foams to create a layer of ceramic coating. The sound absorption coefficients of the foams were measured by an impedance tube and they were calculated by a transfer function method. The experimental results show that the sound absorption coefficient of the foam increases gradually with the decrease of pore size. Additionally, when the porosity of the foam increases, the sound absorption coefficient also increases. The PEO coating surface is rough and porous, which is beneficial for improvement in sound absorption. After PEO treatment, the maximum sound absorption of the foam is improved to some extent

    Spontaneous hepatic haemorrhage after caesarean section in a patient with uraemia and superimposed preeclampsia: a case report

    No full text
    Perinatal spontaneous hepatic haemorrhage is a very rare disease affecting pregnant women, particularly those on long-term dialysis, that has a high maternal and infant mortality rate. Most patients experience preeclampsia with haemolysis, elevated liver enzymes and low platelets syndrome. Here, the case of a 35-year-old multigravida patient with known chronic kidney disease and chronic hypertension with uraemia, who developed spontaneous hepatic haemorrhage after caesarean section, is described. The patient experienced sudden massive circulatory failure, but hemodynamics were temporarily stabilized after emergency surgery. Following transfer to the intensive care unit for continued treatment, her blood pressure and haemoglobin level continued to drop. Selective hepatic artery embolization was performed on day 2 after delivery, and her vital signs gradually stabilized. On day 30 after delivery, the patient was discharged in a stable condition. The newborn recovered after therapy in neonatal intensive care for 2 months. The present case suggests that, for perinatal spontaneous hepatic haemorrhage, timely and accurate diagnosis, multidisciplinary management and determining the therapeutic approach according to clinical symptoms are essential
    • …
    corecore