7,374 research outputs found

    Recycling Computed Answers in Rewrite Systems for Abduction

    Full text link
    In rule-based systems, goal-oriented computations correspond naturally to the possible ways that an observation may be explained. In some applications, we need to compute explanations for a series of observations with the same domain. The question whether previously computed answers can be recycled arises. A yes answer could result in substantial savings of repeated computations. For systems based on classic logic, the answer is YES. For nonmonotonic systems however, one tends to believe that the answer should be NO, since recycling is a form of adding information. In this paper, we show that computed answers can always be recycled, in a nontrivial way, for the class of rewrite procedures that we proposed earlier for logic programs with negation. We present some experimental results on an encoding of the logistics domain.Comment: 20 pages. Full version of our IJCAI-03 pape

    Relating Weight Constraint and Aggregate Programs: Semantics and Representation

    Full text link
    Weight constraint and aggregate programs are among the most widely used logic programs with constraints. In this paper, we relate the semantics of these two classes of programs, namely the stable model semantics for weight constraint programs and the answer set semantics based on conditional satisfaction for aggregate programs. Both classes of programs are instances of logic programs with constraints, and in particular, the answer set semantics for aggregate programs can be applied to weight constraint programs. We show that the two semantics are closely related. First, we show that for a broad class of weight constraint programs, called strongly satisfiable programs, the two semantics coincide. When they disagree, a stable model admitted by the stable model semantics may be circularly justified. We show that the gap between the two semantics can be closed by transforming a weight constraint program to a strongly satisfiable one, so that no circular models may be generated under the current implementation of the stable model semantics. We further demonstrate the close relationship between the two semantics by formulating a transformation from weight constraint programs to logic programs with nested expressions which preserves the answer set semantics. Our study on the semantics leads to an investigation of a methodological issue, namely the possibility of compact representation of aggregate programs by weight constraint programs. We show that almost all standard aggregates can be encoded by weight constraints compactly. This makes it possible to compute the answer sets of aggregate programs using the ASP solvers for weight constraint programs. This approach is compared experimentally with the ones where aggregates are handled more explicitly, which show that the weight constraint encoding of aggregates enables a competitive approach to answer set computation for aggregate programs.Comment: To appear in Theory and Practice of Logic Programming (TPLP), 2011. 30 page

    Expressive Completeness of Existential Rule Languages for Ontology-based Query Answering

    Full text link
    Existential rules, also known as data dependencies in Databases, have been recently rediscovered as a promising family of languages for Ontology-based Query Answering. In this paper, we prove that disjunctive embedded dependencies exactly capture the class of recursively enumerable ontologies in Ontology-based Conjunctive Query Answering (OCQA). Our expressive completeness result does not rely on any built-in linear order on the database. To establish the expressive completeness, we introduce a novel semantic definition for OCQA ontologies. We also show that neither the class of disjunctive tuple-generating dependencies nor the class of embedded dependencies is expressively complete for recursively enumerable OCQA ontologies.Comment: 10 pages; the full version of a paper to appear in IJCAI 2016. Changes (regarding to v1): a new reference has been added, and some typos have been correcte

    Student Information Base

    Get PDF

    Importance of non-flow in mixed-harmonic multi-particle correlations in small collision systems

    Get PDF
    Recently CMS Collaboration measured mixed-harmonic four-particle azimuthal correlations, known as symmetric cumulants SC(n,m), in pp and pPb collisions, and interpreted the non-zero SC(n,m) as evidence for long-range collectivity in these small collision systems. Using the PYTHIA and HIJING models which do not have genuine long-range collectivity, we show that the CMS results, obtained with standard cumulant method, could be dominated by non-flow effects associated with jet and dijets, especially in pppp collisions. We show that the non-flow effects are largely suppressed using the recently proposed subevent cumulant methods by requiring azimuthal correlation between two or more pseudorapidity ranges. We argue that the reanalysis of SC(n,m) using the subevent method in experiments is necessary before they can used to provide further evidences for a long-range multi-particle collectivity and constraints on theoretical models in small collision systems.Comment: 7 pages and 6 figures, replace with published versio

    SLT-Resolution for the Well-Founded Semantics

    Full text link
    Global SLS-resolution and SLG-resolution are two representative mechanisms for top-down evaluation of the well-founded semantics of general logic programs. Global SLS-resolution is linear for query evaluation but suffers from infinite loops and redundant computations. In contrast, SLG-resolution resolves infinite loops and redundant computations by means of tabling, but it is not linear. The principal disadvantage of a non-linear approach is that it cannot be implemented using a simple, efficient stack-based memory structure nor can it be easily extended to handle some strictly sequential operators such as cuts in Prolog. In this paper, we present a linear tabling method, called SLT-resolution, for top-down evaluation of the well-founded semantics. SLT-resolution is a substantial extension of SLDNF-resolution with tabling. Its main features include: (1) It resolves infinite loops and redundant computations while preserving the linearity. (2) It is terminating, and sound and complete w.r.t. the well-founded semantics for programs with the bounded-term-size property with non-floundering queries. Its time complexity is comparable with SLG-resolution and polynomial for function-free logic programs. (3) Because of its linearity for query evaluation, SLT-resolution bridges the gap between the well-founded semantics and standard Prolog implementation techniques. It can be implemented by an extension to any existing Prolog abstract machines such as WAM or ATOAM.Comment: Slight modificatio
    • …
    corecore