29 research outputs found
Antibacterial Activities of a New Brominated Diterpene from Borneon Laurencia spp
In our continuous interest to study the diversity of halogenated metabolites of Malaysian species of the red algal genus Laurencia, we examined the chemical composition of five populations of unrecorded Laurencia sp. A new brominated diterpene, 10-acetoxyangasiol (1), and four other known metabolites, aplysidiol (2), cupalaurenol (3), 1-methyl-2,3,5-tribromoindole (4), and chamigrane epoxide (5), were isolated and identified. Isolated metabolites exhibited potent antibacterial activities against clinical bacteria, Staphylococcus aureus, Staphylococcus sp., Streptococcus pyogenes, Salmonella sp. and Vibrio cholerae
New applications of the existence of solutions for equilibrium equations with Neumann type boundary condition
Abstract Using the existence of solutions for equilibrium equations with a Neumann type boundary condition as developed by Shi and Liao (J. Inequal. Appl. 2015:363, 2015), we obtain the Riesz integral representation for continuous linear maps associated with additive set-valued maps with values in the set of all closed bounded convex non-empty subsets of any Banach space, which are generalizations of integral representations for harmonic functions proved by Leng, Xu and Zhao (Comput. Math. Appl. 66:1-18, 2013). We also deduce the Riesz integral representation for set-valued maps, for the vector-valued maps of Diestel-Uhl and for the scalar-valued maps of Dunford-Schwartz
Insights into the performance and degradation of polybenzimidazole/muscovite composite membranes in high–temperature proton exchange membrane fuel cells
To improve the performance and durability of phosphoric acid (PA) doped polybenzimidazole (PBI) membranes in high–temperature proton exchange membrane fuel cells (HT–PEMFCs), in this work, as–received natural muscovite (Mus), a clay material, was successfully incorporated into PBI matrix as an inorganic filler through the doctor blade method. The amount of Mus was varied (0.5–2 wt%) to explore its impact on the proton conductivity, mechanical and dimensional stability, power density, durability, and acid retention ability of the composite membranes. As the incorporation of Mus into membranes can introduce interactions with polymer chains and PA molecules to afford additional proton transport pathways at the interfaces in Mus–PBI and Mus–PA crosslinks, the membrane with 1 wt% Mus showed highest power density of 586 mW cm−2 at 150 °C without humidification, 24% higher than the pure PBI membrane (474 mW cm−2). Meanwhile, the PA doped composite membrane with 1 wt% Mus also displayed the highest mechanical strength (7.5 MPa) and lowest dimensional swelling (70.99% in area swelling and 202% in volume swelling). Compared with the pristine PBI membrane, the composite membranes had significantly improved durability under accelerated stress test (AST). The decreased ohmic resistance and increased polarization resistance after AST are related to the membrane thinning and the loss of catalyst active area, respectively. Most importantly, it was found that the strong interactions between Mus and PA molecules lead to improved acid retention ability of the composite membranes, thus less leached acid from the composite membrane reduces the negative effects on the catalyst degradation to alleviate degradation on cell performance and durability.</p