17,583 research outputs found

    Thermodynamic constraints on matter creation models

    Full text link
    Entropy is a fundamental concept from Thermodynamics and it can be used to study models on context of Creation Cold Dark Matter (CCDM). From conditions on the first (S˙0\dot{S}\geq0)\footnote{Throughout the present work we will use dots to indicate time derivatives and dashes to indicate derivatives with respect to scale factor.} and second order (S¨<0\ddot{S}<0) time derivatives of total entropy in the initial expansion of Sitter through the radiation and matter eras until the end of Sitter expansion, it is possible to estimate the intervals of parameters. The total entropy (StS_{t}) is calculated as sum of the entropy at all eras (SγS_{\gamma} and SmS_{m}) plus the entropy of the event horizon (ShS_h). This term derives from the Holographic Principle where it suggests that all information is contained on the observable horizon. The main feature of this method for these models are that thermodynamic equilibrium is reached in a final de Sitter era. Total entropy of the universe is calculated with three terms: apparent horizon (ShS_{h}), entropy of matter (SmS_{m}) and entropy of radiation (SγS_{\gamma}). This analysis allows to estimate intervals of parameters of CCDM models.Comment: 16 pages, 11 figures. Replaced in order to match accepted versio

    CCDM model from quantum particle creation: constraints on dark matter mass

    Full text link
    In this work the results from the quantum process of matter creation have been used in order to constrain the mass of the dark matter particles in an accelerated Cold Dark Matter model (Creation Cold Dark Matter, CCDM). In order to take into account a back reaction effect due to the particle creation phenomenon, it has been assumed a small deviation ε\varepsilon for the scale factor in the matter dominated era of the form t23+εt^{\frac{2}{3}+\varepsilon}. Based on recent H(z)H(z) data, the best fit values for the mass of dark matter created particles and the ε\varepsilon parameter have been found as m=1.6×103m=1.6\times10^3 GeV, restricted to a 68.3\% c.l. interval of (1.5<m<6.3×1071.5<m<6.3\times10^7) GeV and ε=0.2500.096+0.15\varepsilon = -0.250^{+0.15}_{-0.096} at 68.3\% c.l. For these best fit values the model correctly recovers a transition from decelerated to accelerated expansion and admits a positive creation rate near the present era. Contrary to recent works in CCDM models where the creation rate was phenomenologically derived, here we have used a quantum mechanical result for the creation rate of real massive scalar particles, given a self consistent justification for the physical process. This method also indicates a possible solution to the so called "dark degeneracy", where one can not distinguish if it is the quantum vacuum contribution or quantum particle creation which accelerates the Universe expansion.Comment: 16 pages, 5 figures. Major modifications have been done, following the referee suggestions. The deduction of the treatment is now more transparent, figures have been added showing the statistical limits over the dark matter mass, and the best fit for DM mass has been slightly modifie

    Exploring structure based charge transport relationships in phenyl diketopyrrolopyrrole single crystals using a 2D π–π dimer model system

    Get PDF
    This document is the Accepted Manuscript version of the following article: Jesus Calvo-Castro, and Callum J. McHugh, ‘Exploring structure based charge transport relationships in phenyl diketopyrrolopyrrole single crystals using a 2D π–π dimer model system’, Journal of Materials Chemistry C, Issue 16, 2017, first published 28 March 2017. The version of record is available online at DOI: http://dx.doi.org/10.1039/C7TC00434F © Royal Society of Chemistry 2017Crystalline phenyl diketopyrrolopyrroles are often overlooked as charge transfer mediating materials in optoelectronic applications. We report an experimentally ratified two dimensional π–π model dimer system dispelling previous misconceptions regarding the potential of these materials as organic semiconductors and that will enable researchers to screen and predict charge transport potential solely on the basis of their single crystal derived π-stacking architectures. In testing our model system versus the available database of phenyl diketopyrrolopyrrole single crystal structures we reveal that these materials are characterised by intrinsically large thermal integrities and in many cases large charge transfer integrals, not solely restricted to dimeric interactions exhibiting close intermonomer arrangements and bearing low torsion of the core phenyl rings. This study will be of significant interest to the increasingly large community engaged in the quest to engineer π-conjugated organic based semiconducting devices and particularly those employing crystalline diketopyrrolopyrroles.Peer reviewe

    CCDM Model with Spatial Curvature and The Breaking of "Dark Degeneracy"

    Full text link
    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, leads to a negative creation pressure, which can be used to explain the accelerated expansion of the Universe. Recently, it has been shown that the dynamics of expansion of such models can not be distinguished from the concordance Λ\LambdaCDM model, even at higher orders in the evolution of density perturbations, leading at the so called "dark degeneracy". However, depending on the form of the CDM creation rate, the inclusion of spatial curvature leads to a different behavior of CCDM when compared to Λ\LambdaCDM, even at background level. With a simple form for the creation rate, namely, Γ1H\Gamma\propto\frac{1}{H}, we show that this model can be distinguished from Λ\LambdaCDM, provided the Universe has some amount of spatial curvature. Observationally, however, the current limits on spatial flatness from CMB indicate that neither of the models are significantly favored against the other by current data, at least in the background level.Comment: 13 pages, 5 figure
    corecore