248 research outputs found

    Helicity conservation in inclusive nonleptonic decay B to VX: Test of long-distance final state interaction

    Get PDF
    The polarization measurement in the inclusive B decay provides us with a simple test of how much the long-distance final-state interaction takes place as the energy of the observed meson varies in the final state. We give the expectation of the perturbative QCD for the energy dependence of the helicity fractions in a semiquantitative form. Experiment will tell us for which decay processes the perturbative calculation should be applicable.Comment: 15 pages in Revtex with 3 figures embedde

    Final-state interaction and s-quark helicity conservation in B -> J/psi K*

    Full text link
    The Section of charm quark spin conservation is deleted since it involves more dynamical assumptions than previously stated. A few comments are added in view of new experimental results.Comment: To replace the earlier version of hep-ph/0106354. Minor additions and one deletion with no change in the main argument nor the conclusio

    Factorization and Nonfactorization in B Decays

    Full text link
    Using NLL values for Wilson coefficients and including the contributions from the penguin diagrams, we estimate the amount of nonfactorization in two-body hadronic B decays. Also, we investigate the model dependence of the nonfactorization parameters by performing the calculation using different models for the form factors. The results support the universality of nonfactorizable contributions in both Cabibbo-favored and Cabibbo-suppressed B decays.Comment: 17 pages, 5 figures, revte

    B -> J/psi K^* Decays in QCD Factorization

    Full text link
    The hadronic decay B -> J K^* is analyzed within the framework of QCD factorization. The spin amplitudes A_0, A_\parallel and A_\perp in the transversity basis and their relative phases are studied using various different form-factor models for B-K^* transition. The effective parameters a_2^h for helicity h=0,+,- states receive different nonfactorizable contributions and hence they are helicity dependent, contrary to naive factorization where a_2^h are universal and polarization independent. QCD factorization breaks down even at the twist-2 level for transverse hard spectator interactions. Although a nontrivial strong phase for the A_\parallel amplitude can be achieved by adjusting the phase of an infrared divergent contribution, the present QCD factorization calculation cannot say anything definite about the phase phi_\parallel. Unlike B -> J/psi K decays, the longitudinal parameter a_2^0 for B -> J/psi K^* does not receive twist-3 corrections and is not large enough to account for the observed branching ratio and the fraction of longitudinal polarization. Possible enhancement mechanisms for a_2^0 are discussed.Comment: 21 pages, 1 figure, a table and a reference added, some typos correcte

    Nonresonant Contributions in B->rho pi Decay

    Full text link
    We consider nonresonant contributions in the Dalitz plot analysis of B->rho pi->pi^+ pi^- pi^0 decay and their potential impact on the extraction of the CKM parameter alpha. In particular, we examine the role of the heavy mesons B^* and B_0, via the process B->pi (B^*, B_0)->pi^+ pi^- pi^0, and their interference with resonant contributions in the rho-mass region. We discuss the inherent uncertainties and suggest that the effects may be substantially smaller than previously indicated.Comment: 15 pages, 3 figures; minor changes, version to appear in Phys. Rev.

    Electromagnetic Decays of Heavy Baryons

    Get PDF
    The electromagnetic decays of the ground state baryon multiplets with one heavy quark are calculated using Heavy Hadron Chiral Perturbation Theory. The M1 and E2 amplitudes for S^{*}--> S gamma, S^{*} --> T gamma and S --> T gamma are separately computed. All M1 transitions are calculated up to O(1/Lambda_chi^2). The E2 amplitudes contribute at the same order for S^{*}--> S gamma, while for S^{*} --> T gamma they first appear at O(1/(m_Q \Lambda_\chi^2)) and for S --> T gamma are completely negligible. The renormalization of the chiral loops is discussed and relations among different decay amplitudes are derived. We find that chiral loops involving electromagnetic interactions of the light pseudoscalar mesons provide a sizable enhancement of these decay widths. Furthermore, we obtain an absolute prediction for the widths of Xi^{0'(*)}_c--> Xi^{0}_c gamma and Xi^{-'(*)}_b--> Xi^{-}_b gamma. Our results are compared to other estimates existing in the literature.Comment: 17 pages, 3 figures, submitted to Phys. Rev.

    Updated Analysis of a_1 and a_2 in Hadronic Two-body Decays of B Mesons

    Full text link
    Using the recent experimental data of BD()(π,ρ)B\to D^{(*)}(\pi,\rho), BD()Ds()B\to D^{(*)} D_s^{(*)}, BJ/ψK()B\to J/\psi K^{(*)} and various model calculations on form factors, we re-analyze the effective coefficients a_1 and a_2 and their ratio. QCD and electroweak penguin corrections to a_1 from BD()Ds()B\to D^{(*)}D_s^{(*)} and a_2 from BJ/ψK()B\to J/\psi K^{(*)} are estimated. In addition to the model-dependent determination, the effective coefficient a_1 is also extracted in a model-independent way as the decay modes BD()hB\to D^{(*)}h are related by factorization to the measured semileptonic distribution of BD()νˉB\to D^{(*)}\ell \bar\nu at q2=mh2q^2=m_h^2. Moreover, this enables us to extract model-independent heavy-to-heavy form factors, for example, F0BD(mπ2)=0.66±0.06±0.05F_0^{BD}(m_\pi^2)=0.66\pm0.06\pm0.05 and A0BD(mπ2)=0.56±0.03±0.04A_0^{BD^*}(m_\pi^2)=0.56\pm0.03\pm0.04. The determination of the magnitude of a_2 from BJ/ψK()B\to J/\psi K^{(*)} depends on the form factors F1BKF_1^{BK}, A1,2BKA_{1,2}^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi}. By requiring that a_2 be process insensitive (i.e., the value of a_2 extracted from J/ψKJ/\psi K and J/ψKJ/\psi K^* states should be similar), as implied by the factorization hypothesis, we find that BK()B\to K^{(*)} form factors are severely constrained; they respect the relation F1BK(mJ/ψ2)1.9A1BK(mJ/ψ2)F_1^{BK}(m^2_{J/\psi})\approx 1.9 A_1^{BK^*}(m^2_{J/\psi}). Form factors A2BKA_2^{BK^*} and VBKV^{BK^*} at q2=mJ/ψ2q^2=m^2_{J/\psi} inferred from the measurements of the longitudinal polarization fraction and the P-wave component in BJ/ψKB\to J/\psi K^* are obtained. A stringent upper limit on a_2 is derived from the current bound on \ov B^0\to D^0\pi^0 and it is sensitive to final-state interactions.Comment: 33 pages, 2 figures. Typos in Tables I and IX are corrected. To appear in Phys. Rev.

    Charming penguins in B => K* pi, K (rho,omega,phi) decays

    Full text link
    We evaluate the decays B => K* pi, K (rho,omega,phi) adding the long distance charming penguin contributions to the short distance: Tree+Penguin amplitudes. We estimate the imaginary part of the charming penguin by an effective field theory inspired by the Heavy Quark Effective Theory and parameterize its real part. The final results for branching ratios depend on only two real parameters and show a significant role of the charming penguins. The overall agreement with the available experimental data is satisfactory.Comment: 13 pages, 1 figur

    Charmless hadronic decays BPP,PV,VVB \to PP, PV, VV and new physics effects in the general two-Higgs doublet models

    Get PDF
    Based on the low-energy effective Hamiltonian with the generalized factorization, we calculate the new physics contributions to the branching ratios of the two-body charmless hadronic decays of BuB_u and BdB_d mesons induced by the new gluonic and electroweak charged-Higgs penguin diagrams in the general two-Higgs doublet models (models I, II and III). Within the considered parameter space, we find that: (a) the new physics effects from new gluonic penguin diagrams strongly dominate over those from the new γ\gamma- and Z0Z^0- penguin diagrams; (b) in models I and II, new physics contributions to most studied B meson decay channels are rather small in size: from -15% to 20%; (c) in model III, however, the new physics enhancements to the penguin-dominated decay modes can be significant, (30200)\sim (30 -200)%, and therefore are measurable in forthcoming high precision B experiments; (d) the new physics enhancements to ratios {\cal B}(B \to K \etap) are significant in model III, (3570)\sim (35 -70)%, and hence provide a simple and plausible new physics interpretation for the observed unexpectedly large B \to K \etap decay rates; (e) the theoretical predictions for B(BK+π){\cal B}(B \to K^+ \pi) and B(BK0π+){\cal B}(B \to K^0 \pi^+) in model III are still consistent with the data within 2σ2\sigma errors; (f) the significant new physics enhancements to the branching ratios of BK0π0,Kη,K+π,K+ϕ,K0ω,K+ϕB \to K^0 \pi^0, K^* \eta, K^{*+} \pi^-, K^+ \phi, K^{*0} \omega, K^{*+} \phi and K0ϕK^{*0} \phi decays are helpful to improve the agreement between the data and the theoretical predictions; (g) the theoretical predictions of B(BPP,PV,VV){\cal B}(B \to PP, PV, VV) in the 2HDM's are generally consistent with experimental measurements and upper limits (9090% C.L.)Comment: 55 pages, Latex file, 17 PS and EPS figures. With minor corrections, final version to be published in Phys.Rev. D. Repot-no: PKU-TH-2000-4

    Rescattering and chiral dynamics in B\to \rho\pi decay

    Full text link
    We examine the role of B^0(\bar B^0) \to \sigma \pi^0 \to \pi^+\pi^- \pi^0 decay in the Dalitz plot analysis of B^0 (\bar B^0) \to \rho\pi \to \pi^+\pi^-\pi^0 decays, employed to extract the CKM parameter \alpha. The \sigma \pi channel is significant because it can break the relationship between the penguin contributions in B\to\rho^0\pi^0, B\to\rho^+\pi^-, and B\to\rho^-\pi^+ decays consequent to an assumption of isospin symmetry. Its presence thus mimics the effect of isospin violation. The \sigma\pi^0 state is of definite CP, however; we demonstrate that the B\to\rho\pi analysis can be generalized to include this channel without difficulty. The \sigma or f_0(400-1200) ``meson'' is a broad I=J=0 enhancement driven by strong \pi\pi rescattering; a suitable scalar form factor is constrained by the chiral dynamics of low-energy hadron-hadron interactions - it is rather different from the relativistic Breit-Wigner form adopted in earlier B\to\sigma\pi and D\to\sigma\pi analyses. We show that the use of this scalar form factor leads to an improved theoretical understanding of the measured ratio Br(\bar B^0 \to \rho^\mp \pi^\pm) / Br(B^-\to \rho^0 \pi^-).Comment: 26 pages, 8 figs, published version. typos fixed, minor change
    corecore