205 research outputs found
Investigation of the relationship between tensile viscoelasticity and unloaded ultrasound shear wave measurements in ex vivo tendon
Mechanical properties of biological tissues are of key importance for proper function and in situ methods for mechanical characterization are sought after in the context of both medical diagnosis as well as understanding of pathophysiological processes. Shear wave elastography (SWE) and accompanying physical modelling methods provide valid estimates of stiffness in quasi-linear viscoelastic, isotropic tissue but suffer from limitations in assessing non-linear viscoelastic or anisotropic material, such as tendon. Indeed, mathematical modelling predicts the longitudinal shear wave velocity to be unaffected by the tensile but rather the shear viscoelasticity. Here, we employ a heuristic experimental testing approach to the problem to assess the most important potential confounders, namely tendon mass density and diameter, and to investigate associations between tendon tensile viscoelasticity with shear wave descriptors. Small oscillatory testing of animal flexor tendons at two baseline stress levels over a large frequency range comprehensively characterized tensile viscoelastic behavior. A broad set of shear wave descriptors was retrieved on the unloaded tendon based on high frame-rate plane wave ultrasound after applying an acoustic deformation impulse. Tensile modulus and strain energy dissipation increased logarithmically and linearly, respectively, with the frequency of the applied strain. Shear wave descriptors were mostly unaffected by tendon diameter but were highly sensitive to tendon mass density. Shear wave group and phase velocity showed no association with tensile elasticity or strain rate-stiffening but did show an association with tensile strain energy dissipation. The longitudinal shear wave velocity may not characterize tensile elasticity but rather tensile viscous properties of transversely isotropic collagenous tissues
Evaluation of Tibial Fixation Devices for Quadrupled Hamstring ACL Reconstruction
BACKGROUND
Shortcomings to tibial-side fixation have been reported as causes of failure after anterior cruciate ligament reconstruction. Adjustable-loop suspensory devices have become popular; however, no comparison with hybrid fixation (ie, interference screw and cortical button) exists to our knowledge.
PURPOSE
The purpose of this study was to compare the biomechanical properties of adjustable loop devices (ALDs) in full-tunnel and closed-socket configurations in relation to hybrid fixation. We hypothesized that primary stability of fixation by a tibial ALD will not be inferior to hybrid fixation.
STUDY DESIGN
Controlled laboratory study.
METHODS
Tibial fixation of a quadrupled tendon graft was biomechanically investigated in a porcine tibia-bovine tendon model using 5 techniques (n = 6 specimens each). The tested constructs included hybrid fixation with a cortical fixation button and interference screw (group 1), single cortical fixation with the full-tunnel technique using an open-suture strand button (group 2) or an ALD (group 3), or closed-socket fixation using 2 different types of ALDs (groups 4 and 5). Each specimen was evaluated using a materials testing machine (1000 cycles from 50-250 N and pull to failure). Force at failure, cyclic displacement, stiffness, and ability to pretension the graft during insertion were compared among the groups.
RESULTS
No differences in ultimate load to failure were found between the ALD constructs (groups 3, 4, and 5) and hybrid fixation (group 1). Cyclic displacement was significantly higher in group 2 vs all other groups (P < .001); however, no difference was observed in groups 3, 4, and 5 as compared with group 1. The remaining tension on the construct after fixation was significantly higher in groups 3 and 4 vs groups 1, 2, and 5 (P < .02 for all comparisons), irrespective of whether a full-tunnel or closed-socket approach was used.
CONCLUSION
Tibial anterior cruciate ligament graft fixation with knotless ALDs achieved comparable results with hybrid fixation in the full-tunnel and closed-socket techniques. The retention of graft tension appears to be biomechanically more relevant than tunnel type.
CLINICAL RELEVANCE
The study findings emphasize the importance of the tension at which fixation is performed
Posterior stability of the shoulder depends on acromial anatomy: a biomechanical study of 3D surface models
PURPOSE
Primary glenohumeral osteoarthritis is commonly associated with static posterior subluxation of the humeral head. Scapulae with static/dynamic posterior instability feature a superiorly and horizontally oriented acromion. We investigated whether the acromion acts as a restraint to posterior humeral translation.
METHODS
Five three-dimensional (3D) printed scapula models were biomechanically tested. A statistical shape mean model (SSMM) of the normal scapula of 40 asymptomatic shoulders was fabricated. Next, a SSMM of scapular anatomy associated with posterior subluxation was generated using data of 20 scapulae ("B1"). This model was then used to generate three models of surgical correction: glenoid version, acromial orientation, and acromial and glenoid orientation. With the joint axially loaded (100N) and the humerus stabilized, an anterior translation force was applied to the scapula in 35°, 60° and 75° of glenohumeral flexion. Translation (mm) was measured.
RESULTS
In the normal scapula, the humerus translates significantly less to contact with the acromion compared to all other configurations (p < .000 for all comparisons; i.e. 35°: "normal" 8,1 mm (± 0,0) versus "B1" 11,9 mm (± 0,0) versus "B1 Acromion Correction" 12,2 mm (± 0,2) versus "B1 Glenoid Correction" 13,3 mm (± 0,1)). Restoration of normal translation was only achieved with correction of glenoid and acromial anatomy (i.e. 75°: "normal" 11 mm (± 0,8) versus "B1 Acromion Correction" 17,5 mm (± 0,1) versus "B1 Glenoid Correction" 19,7 mm (± 1,3) versus "B1 Glenoid + Acromion Correction" 11,5 mm (± 1,1)).
CONCLUSIONS
Persistence or recurrence of static/dynamic posterior instability after correction of glenoid version alone may be related to incomplete restoration of the intrinsic stability that is conferred by a normal acromial anatomy.
LEVEL OF EVIDENCE V
biomechanical study
A novel approach for tetrahedral-element-based finite element simulations of anisotropic hyperelastic intervertebral disc behavior
Intervertebral discs are microstructurally complex spinal tissues that add greatly to the flexibility and mechanical strength of the human spine. Attempting to provide an adjustable basis for capturing a wide range of mechanical characteristics and to better address known challenges of numerical modeling of the disc, we present a robust finite-element-based model formulation for spinal segments in a hyperelastic framework using tetrahedral elements. We evaluate the model stability and accuracy using numerical simulations, with particular attention to the degenerated intervertebral discs and their likely skewed and narrowed geometry. To this end, 1) annulus fibrosus is modeled as a fiber-reinforced Mooney-Rivlin type solid for numerical analysis. 2) An adaptive state-variable dependent explicit time step is proposed and utilized here as a computationally efficient alternative to theoretical estimates. 3) Tetrahedral-element-based FE models for spinal segments under various loading conditions are evaluated for their use in robust numerical simulations. For flexion, extension, lateral bending, and axial rotation load cases, numerical simulations reveal that a suitable framework based on tetrahedral elements can provide greater stability and flexibility concerning geometrical meshing over commonly employed hexahedral-element-based ones for representation and study of spinal segments in various stages of degeneration
Three-dimensional mapping of ultrasound-derived skeletal muscle shear wave velocity
Introduction: The mechanical properties of skeletal muscle are indicative of its capacity to perform physical work, state of disease, or risk of injury. Ultrasound shear wave elastography conducts a quantitative analysis of a tissue's shear stiffness, but current implementations only provide two-dimensional measurements with limited spatial extent. We propose and assess a framework to overcome this inherent limitation by acquiring numerous and contiguous measurements while tracking the probe position to create a volumetric scan of the muscle. This volume reconstruction is then mapped into a parameterized representation in reference to geometric and anatomical properties of the muscle. Such an approach allows to quantify regional differences in muscle stiffness to be identified across the entire muscle volume assessed, which could be linked to functional implications. Methods: We performed shear wave elastography measurements on the vastus lateralis (VL) and the biceps femoris long head (BFlh) muscle of 16 healthy volunteers. We assessed test-retest reliability, explored the potential of the proposed framework in aggregating measurements of multiple subjects, and studied the acute effects of muscular contraction on the regional shear wave velocity post-measured at rest. Results: The proposed approach yielded moderate to good reliability (ICC between 0.578 and 0.801). Aggregation of multiple subject measurements revealed considerable but consistent regional variations in shear wave velocity. As a result of muscle contraction, the shear wave velocity was elevated in various regions of the muscle; showing pre-to-post regional differences for the radial assessement of VL and longitudinally for BFlh. Post-contraction shear wave velocity was associated with maximum eccentric hamstring strength produced during six Nordic hamstring exercise repetitions. Discussion and Conclusion: The presented approach provides reliable, spatially resolved representations of skeletal muscle shear wave velocity and is capable of detecting changes in three-dimensional shear wave velocity patterns, such as those induced by muscle contraction. The observed systematic inter-subject variations in shear wave velocity throughout skeletal muscle additionally underline the necessity of accurate spatial referencing of measurements. Short high-effort exercise bouts increase muscle shear wave velocity. Further studies should investigate the potential of shear wave elastography in predicting the muscle's capacity to perform work
Impact of High-Molecular-Weight Hyaluronic Acid on Gene Expression in Rabbit Achilles Tenocytes In Vitro
(1) Background: Surgical tendon repair often leads to adhesion formation, leading to joint stiffness and a reduced range of motion. Tubular implants set around sutured tendons might help to reduce peritendinous adhesions. The lubricant hyaluronic acid (HA) is a viable option for optimizing such tubes with the goal of further enhancing the anti-adhesive effect. As the implant degrades over time and diffusion is presumed, the impact of HA on tendon cells is important to know. (2) Methods: A culture medium of rabbit Achilles tenocytes was supplemented with high-molecular-weight (HMW) HA and the growth curves of the cells were assessed. Additionally, after 3, 7 and 14 days, the gene expression of several markers was analyzed for matrix assembly, tendon differentiation, fibrosis, proliferation, matrix remodeling, pro-inflammation and resolution. (3) Results: The addition of HA decreased matrix marker genes, downregulated the fibrosis marker α-SMA for a short time and slightly increased the matrix-remodeling gene MMP-2. Of the pro-inflammatory marker genes, only IL-6 was significantly upregulated. IL-6 has to be kept in check, although IL-6 is also needed for a proper initial inflammation and efficient resolution. (4) Conclusions: The observed effects in vitro support the intended anti-adhesion effect and therefore, the use of HMW HA is promising as a biodegradable implant for tendon repair
Optimization of loading protocols for tissue engineering experiments
Tissue engineering (TE) combines cells and biomaterials to treat orthopedic pathologies. Maturation of de novo tissue is highly dependent on local mechanical environments. Mechanical stimulation influences stem cell differentiation, however, the role of various mechanical loads remains unclear. While bioreactors simplify the complexity of the human body, the potential combination of mechanical loads that can be applied make it difficult to assess how different factors interact. Human bone marrow-derived mesenchymal stromal cells were seeded within a fibrin-polyurethane scaffold and exposed to joint-mimicking motion. We applied a full factorial design of experiment to investigate the effect that the interaction between different mechanical loading parameters has on biological markers. Additionally, we employed planned contrasts to analyze differences between loading protocols and a linear mixed model with donor as random effect. Our approach enables screening of multiple mechanical loading combinations and identification of significant interactions that could not have been studied using classical mechanobiology studies. This is useful to screen the effect of various loading protocols and could also be used for TE experiments with small sample sizes and further combinatorial medication studies
A novel approach for tetrahedral-element-based finite element simulations of anisotropic hyperelastic intervertebral disc behavior
Intervertebral discs are microstructurally complex spinal tissues that add greatly to the flexibility and mechanical strength of the human spine. Attempting to provide an adjustable basis for capturing a wide range of mechanical characteristics and to better address known challenges of numerical modeling of the disc, we present a robust finite-element-based model formulation for spinal segments in a hyperelastic framework using tetrahedral elements. We evaluate the model stability and accuracy using numerical simulations, with particular attention to the degenerated intervertebral discs and their likely skewed and narrowed geometry. To this end, 1) annulus fibrosus is modeled as a fiber-reinforced Mooney-Rivlin type solid for numerical analysis. 2) An adaptive state-variable dependent explicit time step is proposed and utilized here as a computationally efficient alternative to theoretical estimates. 3) Tetrahedral-element-based FE models for spinal segments under various loading conditions are evaluated for their use in robust numerical simulations. For flexion, extension, lateral bending, and axial rotation load cases, numerical simulations reveal that a suitable framework based on tetrahedral elements can provide greater stability and flexibility concerning geometrical meshing over commonly employed hexahedral-element-based ones for representation and study of spinal segments in various stages of degeneration
A deep learning pipeline for automatized assessment of spinal MRI
Background
This work evaluates the feasibility, development, and validation of a machine learning pipeline that includes all tasks from MRI input to the segmentation and grading of the intervertebral discs in the lumbar spine, offering multiple different radiological gradings of degeneration as quantitative objective output.
Methods
The pipelines’ performance was analysed on 1′000 T2-weighted sagittal MRI. Binary outputs were assessed with the harmonic mean of precision and recall (DSC) and the area under the precision-recall curve (AUC-PR). Multi-class output scores were averaged and complemented by the Top-2 categorical accuracy. The processing success rate was evaluated on 10′053 unlabelled MRI scans of lumbar spines.
Results
The midsagittal plane selection achieved an DSC of 74,80% ± 2,99% and an AUC-PR score of 81.71% ± 2.72% (96.91% Top-2 categorical accuracy). The segmentation network obtained a DSC of 91.80% ± 0.44%. The Pfirrmann grading of intervertebral discs in the midsagittal plane was classified with a DSC of 64.08% ± 3.29% and an AUC-PR score of 68.25% ± 6.00% (91.65% Top-2 categorical accuracy). Disc herniations achieved a DSC of 61.57% ± 3.39% and an AUC-PR score of 66.86% ± 5.03%. The cranial endplate defects reached a DSC of 49.76% ± 3.45% and 52.36% ± 1.98% AUC-PR (slightly superior predictions of caudal endplate defect). The binary classifications for the caudal Schmorl's nodes obtained a DSC of 91.58% ± 2.25% with an AUC-PR metric of 96.69% ± 1.58% (similar performance for cranial Schmorl's nodes). Spondylolisthesis was classified with a DSC of 89.03% ± 2.42% and an AUC-PR score of 95.98% ± 1.82%. Annular Fissures were predicted with a DSC of 78.09% ± 7.21% and an AUC-PR score of 86.31% ± 7.45%. Intervertebral disc classifications in the parasagittal plane achieved an equivalent performance. The pipeline successfully processed 98.53% of the provided sagittal MRI scans.
Conclusions
The present deep learning framework has the potential to aid the quantitative evaluation of spinal MRI for an array of clinically established grading systems. + Graphical abstrac
- …