45 research outputs found

    A Y-band look of the sky with 1-m class telescopes

    Full text link
    Y -band is a broad passband that is centered at ~ 1 micron. It is becoming a new, popular window for extragalactic study especially for observation of red objects thanks to recent CCD technology developments. In order to better understand the general characteristics of objects in Y -band, and to investigate the promise of Y -band observations with small telescopes, we carried out imaging observation of several extragalactic fields, brown dwarfs and high redshift quasars with Y -band filter at the Mt. Lemmon Optical Astronomy Observatory and the Maidanak observatory. From our observations, we constrain the bright end of the galaxy and the stellar number counts in Y -band. Also, we test the usefulness of high redshift quasar (z > 6) selection via i-z-Y color-color diagram, to demonstrate that the i-z-Y color-color diagram is effective for the selection of high redshift quasars even with a conventional optical CCD camera installed at a 1-m class telescope.Comment: 12 pages, 6 figures, accepted for publication in JKA

    Camera for QUasars in EArly uNiverse (CQUEAN)

    Full text link
    We describe the overall characteristics and the performance of an optical CCD camera system, Camera for QUasars in EArly uNiverse (CQUEAN), which is being used at the 2.1 m Otto Struve Telescope of the McDonald Observatory since 2010 August. CQUEAN was developed for follow-up imaging observations of red sources such as high redshift quasar candidates (z >= 5), Gamma Ray Bursts, brown dwarfs, and young stellar objects. For efficient observations of the red objects, CQUEAN has a science camera with a deep depletion CCD chip which boasts a higher quantum efficiency at 0.7 - 1.1 um than conventional CCD chips. The camera was developed in a short time scale (~ one year), and has been working reliably. By employing an auto-guiding system and a focal reducer to enhance the field of view on the classical Cassegrain focus, we achieve a stable guiding in 20 minute exposures, an imaging quality with FWHM >= 0.6" over the whole field (4.8' * 4.8'), and a limiting magnitude of z = 23.4 AB mag at 5-sigma with one hour total integration time.Comment: Accepted for publication in PASP. 26 pages including 5 tables and 24 figure

    Reverberation Mapping of PG 0934+013 with the Southern African Large Telescope

    Full text link
    We present the variability and time lag measurements of PG 0934+013 based on a photometric and spectroscopic monitoring campaign over a two year period. We obtained 46 epochs of data from the spectroscopic campaign, which was carried out using the Southern African Large Telescope with \sim1 week cadence over two sets of 4 month-long observing period, while we obtained 80 epochs of \textit{B}-band imaging data using a few 1-m class telescopes. Due to the seven month gap between the two observing periods, we separately measured the time lags of broad emission lines including Hβ\beta, by comparing the emission line light curve with the \textit{B}-band continuum light curve using the cross-correlation function techniques. We determined the Hβ\beta lag, τcent=8.462.14+2.08\tau_{\rm cent} = 8.46^{+2.08}_{-2.14} days in the observed-frame based on Year 2 data, while the time lag from Year 1 data was not reliably determined. Using the rms spectrum of Year 2 data, we measured the \Hb\ line dispersion \sigmaline = 668 ±\pm 44 \kms\ after correcting for the spectral resolution. Adopting a virial factor f = 4.47 from Woo et al. 2015, we determined the black hole mass MBH_{BH} = 3.130.93+0.91×1063.13 ^{+0.91} _{-0.93} \times 10^{6} \msun based on the \Hb\ time lag and velocity.Comment: 13 pages, 10 figures, ApJ in pres

    Optical Images and Source Catalog of AKARI North Ecliptic Pole Wide Survey Field

    Full text link
    We present the source catalog and the properties of the B,RB-, R-, and II-band images obtained to support the {\it AKARI} North Ecliptic Pole Wide (NEP-Wide) survey. The NEP-Wide is an {\it AKARI} infrared imaging survey of the north ecliptic pole covering a 5.8 deg2^2 area over 2.5 -- 6 \micron wavelengths. The optical imaging data were obtained at the Maidanak Observatory in Uzbekistan using the Seoul National University 4k ×\times 4k Camera on the 1.5m telescope. These images cover 4.9 deg2^2 where no deep optical imaging data are available. Our B,RB-, R-, and II-band data reach the depths of \sim23.4, \sim23.1, and \sim22.3 mag (AB) at 5σ\sigma, respectively. The source catalog contains 96,460 objects in the RR-band, and the astrometric accuracy is about 0.15\arcsec at 1σ\sigma in each RA and Dec direction. These photometric data will be useful for many studies including identification of optical counterparts of the infrared sources detected by {\it AKARI}, analysis of their spectral energy distributions from optical through infrared, and the selection of interesting objects to understand the obscured galaxy evolution.Comment: 39 pages, 12 figure
    corecore