58,242 research outputs found

    Strongly interacting Fermi gases with density imbalance

    Full text link
    We consider density-imbalanced Fermi gases of atoms in the strongly interacting, i.e. unitarity, regime. The Bogoliubov-deGennes equations for a trapped superfluid are solved. They take into account the finite size of the system, as well as give rise to both phase separation and FFLO type oscillations in the order parameter. We show how radio-frequency spectroscopy reflects the phase separation, and can provide direct evidence of the FFLO-type oscillations via observing the nodes of the order parameter.Comment: Added one reference. Published in PR

    Elementary transitions and magnetic correlations in two-dimensional disordered nanoparticle ensembles

    Full text link
    The magnetic relaxation processes in disordered two-dimensional ensembles of dipole-coupled magnetic nanoparticles are theoretically investigated by performing numerical simulations. The energy landscape of the system is explored by determining saddle points, adjacent local minima, energy barriers, and the associated minimum energy paths (MEPs) as functions of the structural disorder and particle density. The changes in the magnetic order of the nanostructure along the MEPs connecting adjacent minima are analyzed from a local perspective. In particular, we determine the extension of the correlated region where the directions of the particle magnetic moments vary significantly. It is shown that with increasing degree of disorder the magnetic correlation range decreases, i.e., the elementary relaxation processes become more localized. The distribution of the energy barriers, and their relation to the changes in the magnetic configurations are quantified. Finally, some implications for the long-time magnetic relaxation dynamics of nanostructures are discussed.Comment: 19 pages, 6 figure

    Reentrant phase diagram of branching annihilating random walks with one and two offsprings

    Full text link
    We investigate the phase diagram of branching annihilating random walks with one and two offsprings in one dimension. A walker can hop to a nearest neighbor site or branch with one or two offsprings with relative ratio. Two walkers annihilate immediately when they meet. In general, this model exhibits a continuous phase transition from an active state into the absorbing state (vacuum) at a finite hopping probability. We map out the phase diagram by Monte Carlo simulations which shows a reentrant phase transition from vacuum to an active state and finally into vacuum again as the relative rate of the two-offspring branching process increases. This reentrant property apparently contradicts the conventional wisdom that increasing the number of offsprings will tend to make the system more active. We show that the reentrant property is due to the static reflection symmetry of two-offspring branching processes and the conventional wisdom is recovered when the dynamic reflection symmetry is introduced instead of the static one.Comment: 14 pages, Revtex, 4 figures (one PS figure file upon request) (submitted to Phy. Rev. E

    Fear and its implications for stock markets

    Get PDF
    The value of stocks, indices and other assets, are examples of stochastic processes with unpredictable dynamics. In this paper, we discuss asymmetries in short term price movements that can not be associated with a long term positive trend. These empirical asymmetries predict that stock index drops are more common on a relatively short time scale than the corresponding raises. We present several empirical examples of such asymmetries. Furthermore, a simple model featuring occasional short periods of synchronized dropping prices for all stocks constituting the index is introduced with the aim of explaining these facts. The collective negative price movements are imagined triggered by external factors in our society, as well as internal to the economy, that create fear of the future among investors. This is parameterized by a ``fear factor'' defining the frequency of synchronized events. It is demonstrated that such a simple fear factor model can reproduce several empirical facts concerning index asymmetries. It is also pointed out that in its simplest form, the model has certain shortcomings.Comment: 5 pages, 5 figures. Submitted to the Proceedings of Applications of Physics in Financial Analysis 5, Turin 200

    Conformal field theory correlations in the Abelian sandpile mode

    Full text link
    We calculate all multipoint correlation functions of all local bond modifications in the two-dimensional Abelian sandpile model, both at the critical point, and in the model with dissipation. The set of local bond modifications includes, as the most physically interesting case, all weakly allowed cluster variables. The correlation functions show that all local bond modifications have scaling dimension two, and can be written as linear combinations of operators in the central charge -2 logarithmic conformal field theory, in agreement with a form conjectured earlier by Mahieu and Ruelle in Phys. Rev. E 64, 066130 (2001). We find closed form expressions for the coefficients of the operators, and describe methods that allow their rapid calculation. We determine the fields associated with adding or removing bonds, both in the bulk, and along open and closed boundaries; some bond defects have scaling dimension two, while others have scaling dimension four. We also determine the corrections to bulk probabilities for local bond modifications near open and closed boundaries.Comment: 13 pages, 5 figures; referee comments incorporated; Accepted by Phys. Rev.

    Nonuniversal Critical Spreading in Two Dimensions

    Full text link
    Continuous phase transitions are studied in a two dimensional nonequilibrium model with an infinite number of absorbing configurations. Spreading from a localized source is characterized by nonuniversal critical exponents, which vary continuously with the density phi in the surrounding region. The exponent delta changes by more than an order of magnitude, and eta changes sign. The location of the critical point also depends on phi, which has important implications for scaling. As expected on the basis of universality, the static critical behavior belongs to the directed percolation class.Comment: 21 pages, REVTeX, figures available upon reques

    Arrays of Josephson junctions in an environment with vanishing impedance

    Full text link
    The Hamiltonian operator for an unbiased array of Josephson junctions with gate voltages is constructed when only Cooper pair tunnelling and charging effects are taken into account. The supercurrent through the system and the pumped current induced by changing the gate voltages periodically are discussed with an emphasis on the inaccuracies in the Cooper pair pumping. Renormalisation of the Hamiltonian operator is used in order to reliably parametrise the effects due to inhomogeneity in the array and non-ideal gating sequences. The relatively simple model yields an explicit, testable prediction based on three experimentally motivated and determinable parameters.Comment: 13 pages, 9 figures, uses RevTeX and epsfig, Revised version, Better readability and some new result

    Bursts and Shocks in a Continuum Shell Model

    Full text link
    We study a "burst" event, i. e. the evolution of an initial condition having support only in a finite interval of k-space, in the continuum shell model due to Parisi. We show that the continuum equation without forcing or dissipation can be explicitly written in characteristic form and that the right and left moving parts can be solved exactly. When this is supplemented by the appropriate shock condition it is possible to find the asymptotic form of the burst.Comment: 15 pages, 2 eps figures included, Latex 2e. Contribution to the proceedings of the conference: Disorder and Chaos, in honour of Giovanni Paladin, September 22-24, 1997, in Rom
    • …
    corecore