12,719 research outputs found
Polarisation Observables in Antiproton Proton to Lepton Antilepton Reactions
The electromagnetic form factors of hadrons as measured both in the space
like and time like domains provide fundamental information on the nucleon
structure and internal dynamics. General expressions, including the lepton
mass, for the spin averaged differential cross section for the annihilation
reaction lepton antilepton to proton antiproton are given, as well as general
formulae for the single and double spin asymmetries. The time reversed reaction
would involve a kinematic factor. We also present general expressions for the
helicity amplitudes for this reaction.Comment: 4 pages, to be published in the Proceedings of the 17th International
Spin Physics Symposium (SPIN 2006), Kyoto, Japan; October 2-7, 200
High resolution infrared spectroscopy of planetary molecules using diode lasers and Fourier transform spectrometers
Modern observations of infrared molecular lines in planets are performed at spectral resolutions which are as high as those available in the laboratory. Analysis of such data requires laboratory measurements at the highest possible resolution, which also yield accurate line positions and intensities. For planetary purposes the spectrometer must be coupled to sample cells which can be reduced in temperature and varied in pressure. An approach which produces the full range of required molecular line parameters uses a combination of tunable diode lasers and Fourier transform spectrometers (FTS). The FTS provides board spectral coverage and good calibration accuracy, while the diode laser can be used to study those regions which are not resolved by the FTS
Shock isolator for operating a diode laser on a closed-cycle refrigerator
A diode laser mounted within a helium refrigerator is mounted using a braided copper ground strap which provides good impact shock isolation from the refrigerator cold-tip while also providing a good thermal link to the cold-tip. The diode mount also contains a rigid stand-off assembly consisting of alternate sections of nylon and copper which serve as cold stations to improve thermal isolation from the vaccum housing mounting structure. Included in the mount is a Pb-In alloy wafer inserted between the cold-tip and the diode to damp temperature fluctuations occurring at the cold-tip
Diode laser spectra of CCl2F2 near 10.8 muon M: Air-broadening effects
Laboratory spectra of CCL2F2 in the 10.8 micron region was recorded, using a tuneable diode laser spectrometer. Effects of air-broadening at pressures up to 48 Torr show that spectral structure should be exhibited under high resolution at altitudes as low as 19 Km. The single line, pressure-broadening coefficient for CCL2F2 was estimated to be 8 MHz/Torr FWHM
Astronomical observations with the University College London balloon borne telescope
The characteristics of a telescope system which was developed for high altitude balloon astronomy are discussed. A drawing of the optical system of the telescope is provided. A sample of the signals recorded during one of the flights is included. The correlation between the infrared flux and the radio continuum flux is analyzed. A far infrared map of the radio and infrared peaks of selected stars is developed. The spectrum of the planet Saturn is plotted to show intensity as compared with wavenumber
Ground based infrared astronomy
Infrared spectroscopic instrumentation has been developed for ground-based measurements of astrophysical objects in the intermediate infrared. A conventional Michelson interferometer is limited for astronomical applications in the intermediate infrared by quantum noise fluctuations in the radiation form the source and/or background incident on the detector, and the multiplex advantage is no longer available. One feasible approach to recovering the multiplex advantage is post-dispersion. The infrared signal after passing through telescope and interferometer, is dispersed by a low resolution grating spectrometer onto an array of detectors. The feasibility of the post-dispersion system has been demonstrated with observations of astrophysical objects in the 5 and 10 micrometer atmospheric windows from ground-based telescopes. During FY87/88 the post-disperser was used at the Kitt Peak 4-meter telescope and McMath telescope with facility Fourier transform spectrometers. Jupiter, Saturn, Mars, and Venus were observed. On Jupiter, the resolution at 12 micrometer was 0.01/cm, considerably higher than had been acheived previously. The spectrum contains Jovian ethane and acetylene emission. Construction was begun on the large cryogenic grating spectrometer
The nu sub 2 band CHD3; ground state parameters for CHD3 from combination differences
The nu sub 2 fundamental band of CHD3, centered near 2143/cm, was recorded at a resolution of 0.015-0.25/cm. Analysis of ground state combination differences yielded well-determined values for the ground state molecular parameters for CHD3. These parameters were used in the determination of the alpha and beta molecular parameters for nu sub 2
Thermal compensator for closed-cycle helium refrigerator
The wave length of an infrared, semiconductor laser diode having an output frequency that is dependent on the diode temperature is maintained substantially constant by maintaining the diode temperature constant. The diode is carried by a cold tip of a closed cycle helium refrigerator. The refrigerator has a tendency to cause the temperature of the cold tip to oscillate. A heater diode and a sensor diode are placed on a thermal heat sink that is the only highly conductive thermal path between the laser diode and the cold tip. The heat sink has a small volume and low thermal capacitance so that the sensing diode is at substantially the same temperature as the heater diode and substantially no thermal lag exists between them. The sensor diode is connected in a negative feedback circuit with the heater diode so that the tendency of the laser diode to thermally oscillate is virtually eliminated
Forming efficient agent groups for completing complex tasks
In this paper we produce complexity and impossibility results and develop algorithms for a task allocation problem that needs to be solved by a group of autonomous agents working together. In particular, each task is assumed to be composed of several subtasks and involves an associated predetermined and known overall payment (set by the taskās owner) for its completion. However, the division of this payment among the corresponding contributors is not predefined. Now to accomplish a particular task, all its subtasks need to be allocated to agents with the necessary capabilities and the agentsā corresponding costs need to fall within the preset overall task payment. For this scenario, we first provide a cooperative agent system designer with a practical solution that achieves an efficient allocation. However, this solution is not applicable for non-cooperative settings. Consequently, we go on to provide a detailed analysis where we prove that certain design goals cannot be achieved if the agents are self interested. Specifically, we prove that for the general case, no protocol achieving the efficient solution can exist that is individually rational and budget balanced. We show that although efficient protocols may exist in some settings, these will inevitably be setting-specific
How BAO measurements can fail to detect quintessence
We model the nonlinear growth of cosmic structure in different dark energy
models, using large volume N-body simulations. We consider a range of
quintessence models which feature both rapidly and slowly varying dark energy
equations of state, and compare the growth of structure to that in a universe
with a cosmological constant. The adoption of a quintessence model changes the
expansion history of the universe, the form of the linear theory power spectrum
and can alter key observables, such as the horizon scale and the distance to
last scattering. The difference in structure formation can be explained to
first order by the difference in growth factor at a given epoch; this scaling
also accounts for the nonlinear growth at the 15% level. We find that
quintessence models which feature late , rapid transitions towards
in the equation of state, can have identical baryonic acoustic
oscillation (BAO) peak positions to those in CDM, despite being very
different from CDM both today and at high redshifts .
We find that a second class of models which feature non-negligible amounts of
dark energy at early times cannot be distinguished from CDM using
measurements of the mass function or the BAO. These results highlight the need
to accurately model quintessence dark energy in N-body simulations when testing
cosmological probes of dynamical dark energy.Comment: 10 pages, 7 figures, to appear in the Invisible Univers International
Conference AIP proceedings serie
- ā¦