53 research outputs found

    Twentieth Century Black Carbon and Dust Deposition on South Cascade Glacier, Washington State, USA, as Reconstructed From a 158‐m‐Long Ice Core

    Get PDF
    Light absorbing particles (LAPs) include black carbon (BC) and mineral dust and are of interest due to their positive radiative forcing and contribution to albedo reductions and snow and glacier melt. This study documents historic BC and dust deposition as well as their effect on albedo on South Cascade Glacier (SCG) in Washington State (USA) through the analysis of a 158‐m (139.5‐m water equivalent [w.e.]) ice core extracted in 1994 and spanning the period 1840–1991. Peak BC deposition occurred between 1940 and 1960, when median BC concentrations were 16 times higher than background, likely dominated by domestic coal and forest fire emissions. Post 1960 BC concentrations decrease, followed by an increase from 1977 to 1991 due to melt consolidation and higher emissions. Differences between the SCG record and BC emission inventories, as well as ice core records from other regions, highlight regional differences in the timing of anthropogenic and biomass BC emissions. Dust deposition on SCG is dominated by local sources and is variable throughout the record. Albedo reductions from LAP are dominated by dust deposition, except during high BC deposition events from forest fires and during 1940–1960 when BC and dust similarly contribute to albedo reductions. This study furthers understanding of the factors contributing to historical snowmelt and glacier retreat in the Cascades and demonstrates that ice cores retrieved from temperate glaciers have the potential to provide valuable records of LAP deposition

    Age ranges of the Tibetan ice cores with emphasis on the Chongce ice cores, western Kunlun Mountains

    Get PDF
    An accurate chronology is the essential first step for a sound understanding of ice core records. However, dating ice cores drilled from the high-elevation glaciers is challenging and often problematic, leading to great uncertainties. The Guliya ice core, drilled to the bedrock (308.6&thinsp;m in length) along the western Kunlun Mountains on the north-western Tibetan Plateau (TP) and widely used as a benchmark for palaeoclimate research, is believed to reach  &gt; 500&thinsp;ka (thousand years) at its bottom. Meanwhile other Tibetan ice cores (i.e. Dasuopu and East Rongbuk in the Himalayas, Puruogangri in the central TP and Dunde in the north-eastern TP) are mostly of Holocene origin. In this study, we drilled four ice cores into bedrock (216.6, 208.6, 135.8 and 133.8&thinsp;m in length, respectively) from the Chongce ice cap  ∼ 30&thinsp;km to the Guliya ice core drilling site. We took measurements of 14C, 210Pb, tritium and β activity for the ice cores, and used these values in a two-parameter flow model to establish the ice core depth–age relationship. We suggested that the Chongce ice cores might be of Holocene origin, consistent with the other Tibetan ice cores except Guliya. The remarkable discrepancy between the Guliya and all the other Tibetan ice core chronology implies that more effort is necessary to explore multiple dating techniques to confirm the age ranges of the TP glaciers, including those from Chongce and Guliya.</p

    High-altitude glacier archives lost due to climate change-related melting.

    Get PDF
    Global warming has caused widespread surface lowering of mountain glaciers. By comparing two firn cores collected in 2018 and 2020 from Corbassière glacier in Switzerland, we demonstrate how vulnerable these precious archives of past environmental conditions have become. Within two years, the soluble impurity records were destroyed by melting. The glacier is now irrevocably lost as an archive for reconstructing major atmospheric aerosol components

    A Holocene black carbon ice-core record of biomass burning in the Amazon Basin from Illimani, Bolivia

    Get PDF
    The Amazon Basin is one of the major contributors to global biomass burning emissions. However, regional paleofire trends remain particularly unknown. Due to their proximity to the Amazon Basin, Andean ice cores are suitable to reconstruct paleofire trends in South America and improve our understanding of the complex linkages between fires, climate and humans. Here we present the first refractory black carbon (rBC) ice-core record from the Andes as a proxy for biomass burning emissions in the Amazon Basin, derived from an ice core drilled at 6300&thinsp;m&thinsp;a.s.l. from the Illimani glacier in the Bolivian Andes and spanning the entire Holocene back to the last deglaciation 13&thinsp;000 years ago. The Illimani rBC record displays a strong seasonality with low values during the wet season and high values during the dry season due to the combination of enhanced biomass burning emissions in the Amazon Basin and less precipitation at the Illimani site. Significant positive (negative) correlations were found with reanalyzed temperature (precipitation) data for regions in eastern Bolivia and western Brazil characterized by substantial fire activity. rBC long-term trends indirectly reflect regional climatic variations through changing biomass burning emissions as they show higher (lower) concentrations during warm–dry (cold–wet) periods, in line with climate variations such as the Younger Dryas, the 8.2&thinsp;ka event, the Holocene Climatic Optimum, the Medieval Warm Period and the Little Ice Age. The highest rBC concentrations of the entire record occurred during the Holocene Climatic Optimum between 7000 and 3000&thinsp;BCE, suggesting that this exceptionally warm and dry period caused high levels of biomass burning activity, unprecedented in the context of the past 13&thinsp;000 years. Recent rBC levels, rising since 1730&thinsp;CE in the context of increasing temperatures and deforestation, are similar to those of the Medieval Warm Period. No decrease in fire activity was observed in the 20th century, in contradiction to global biomass burning reconstructions based on charcoal data.</p

    19th century glacier retreat in the Alps preceded the emergence of industrial black carbon deposition on high-alpine glaciers

    Get PDF
    Light absorbing aerosols in the atmosphere and cryosphere play an important role in the climate system. Their presence in ambient air and snow changes the radiative properties of these systems, thus contributing to increased atmospheric warming and snowmelt. High spatio-temporal variability of aerosol concentrations and a shortage of long-term observations contribute to large uncertainties in properly assigning the climate effects of aerosols through time.Starting around AD&thinsp;1860, many glaciers in the European Alps began to retreat from their maximum mid-19th century terminus positions, thereby visualizing the end of the Little Ice Age in Europe. Radiative forcing by increasing deposition of industrial black carbon to snow has been suggested as the main driver of the abrupt glacier retreats in the Alps. The basis for this hypothesis was model simulations using elemental carbon concentrations at low temporal resolution from two ice cores in the Alps.Here we present sub-annually resolved concentration records of refractory black carbon (rBC; using soot photometry) as well as distinctive tracers for mineral dust, biomass burning and industrial pollution from the Colle Gnifetti ice core in the Alps from AD&thinsp;1741 to 2015. These records allow precise assessment of a potential relation between the timing of observed acceleration of glacier melt in the mid-19th century with an increase of rBC deposition on the glacier caused by the industrialization of Western Europe. Our study reveals that in AD&thinsp;1875, the time when rBC ice-core concentrations started to significantly increase, the majority of Alpine glaciers had already experienced more than 80&thinsp;% of their total 19th century length reduction, casting doubt on a leading role for soot in terminating of the Little Ice Age. Attribution of glacial retreat requires expansion of the spatial network and sampling density of high alpine ice cores to balance potential biasing effects arising from transport, deposition, and snow conservation in individual ice-core records.</p

    Consistent histories of anthropogenic western European air pollution preserved in different Alpine ice cores

    Get PDF
    Individual high-Alpine ice cores have been proven to contain a well-preserved history of past anthropogenic air pollution in western Europe. The question of how representative one ice core is with respect to the reconstruction of atmospheric composition in the source region has not been addressed so far. Here, we present the first study systematically comparing longer-term ice-core records (1750–2015 CE) of various anthropogenic compounds, such as major inorganic aerosol constituents (NH4+, NO3-, SO42-), black carbon (BC), and trace species (Cd, F−, Pb). Depending on the data availability for the different air pollutants, up to five ice cores from four high-Alpine sites located in the European Alps analysed by different laboratories were considered. Whereas absolute concentration levels can partly differ depending on the prevailing seasonal distribution of accumulated precipitation, all seven investigated anthropogenic compounds are in excellent agreement between the various sites for their respective, species-dependent longer-term concentration trends. This is related to common source regions of air pollution impacting the four sites less than 100 km away including western European countries surrounding the Alps. For individual compounds, the Alpine ice-core composites developed in this study allowed us to precisely time the onset of pollution caused by industrialization in western Europe. Extensive emissions from coal combustion and agriculture lead to an exceeding of pre-industrial (1750–1850) concentration levels already at the end of the 19th century for BC, Pb, exSO42- (non-dust, non-sea salt SO42-), and NH4+, respectively. However, Cd, F−, and NO3- concentrations started surpassing pre-industrial values only in the 20th century, predominantly due to pollution from zinc and aluminium smelters and traffic. The observed maxima of BC, Cd, F−, Pb, and exSO42- concentrations in the 20th century and a significant decline afterwards clearly reveal the efficiency of air pollution control measures such as the desulfurization of coal, the introduction of filters and scrubbers in power plants and metal smelters, and the ban of leaded gasoline improving the air quality in western Europe. In contrast, NO3- and NH4+ concentration records show levels in the beginning of the 21th century which are unprecedented in the context of the past 250 years, indicating that the introduced abatement measures to reduce these pollutants were insufficient to have a major effect at high altitudes in western Europe. Only four ice-core composite records (BC, F−, Pb, exSO42-) of the seven investigated pollutants correspond well with modelled trends, suggesting inaccuracies of the emission estimates or an incomplete representation of chemical reaction mechanisms in the models for the other pollutants. Our results demonstrate that individual ice-core records from different sites in the European Alps generally provide a spatially representative signal of anthropogenic air pollution trends in western European countries.</p

    (210)Po poisoning as possible cause of death: forensic investigations and toxicological analysis of the remains of Yasser Arafat.

    Get PDF
    The late president of the Palestinian Authority, Yasser Arafat, died in November 2004 in Percy Hospital, one month after having experienced a sudden onset of symptoms that included severe nausea, vomiting, diarrhoea and abdominal pain and which were followed by multiple organ failure. In spite of numerous investigations performed in France, the pathophysiological mechanisms at the origin of the symptoms could not be identified. In 2011, we found abnormal levels of polonium-210 ((210)Po) in some of Arafat's belongings that were worn during his final hospital stay and which were stained with biological fluids. This finding led to the exhumation of Arafat's remains in 2012. Significantly higher (up to 20 times) activities of (210)Po and lead-210 ((210)Pb) were found in the ribs, iliac crest and sternum specimens compared to reference samples from the literature (p-value &lt;1%). In all specimens from the tomb, (210)Po activity was supported by a similar activity of (210)Pb. Biokinetic calculations demonstrated that a (210)Pb impurity, as identified in a commercial source of 3MBq of (210)Po, may be responsible for the activities measured in Arafat's belongings and remains 8 years after his death. The absence of myelosuppression and hair loss in Mr Arafat's case compared to Mr Litvinenko's, the only known case of malicious poisoning with (210)Po, could be explained by differences in the time delivery-scheme of intake. In conclusion, statistical Bayesian analysis combining all the evidence gathered in our forensic expert report moderately supports the proposition that Mr Arafat was poisoned by (210)Po

    A revised 1000 year atmospheric δ\u3csup\u3e13\u3c/sup\u3e C-CO2 record from Law Dome and South Pole, Antarctica

    Get PDF
    We present new measurements of δ13C of CO2 extracted from a high-resolution ice core from Law Dome (East Antarctica), together with firn measurements performed at Law Dome and South Pole, covering the last 150 years. Our analysis is motivated by the need to better understand the role and feedback of the carbon (C) cycle in climate change, by advances in measurement methods, and by apparent anomalies when comparing ice core and firn air δ13C records from Law Dome and South Pole. We demonstrate improved consistency between Law Dome ice, South Pole firn, and the Cape Grim (Tasmania) atmospheric δ13C data, providing evidence that our new record reliably extends direct atmospheric measurements back in time. We also show a revised version of early δ13C measurements covering the last 1000 years, with a mean preindustrial level of -6.50‰. Finally, we use a Kalman Filter Double Deconvolution to infer net natural CO2 fluxes between atmosphere, ocean, and land, which cause small δ13C deviations from the predominant anthropogenically induced δ13C decrease. The main features found from the previous δ13C record are confirmed, including the ocean as the dominant cause for the 1940 A.D. CO2 leveling. Our new record provides a solid basis for future investigation of the causes of decadal to centennial variations of the preindustrial atmospheric CO2 concentration. Those causes are of potential significance for predicting future CO2 levels and when attempting atmospheric verification of recent and future global carbon emission mitigation measures through Coupled Climate Carbon Cycle Models. Key Points New and revised, firn and ice δ13C-CO2 measurements from Antarctica Improve consistency between ice and firn δ13C-CO2 measurements Net natural CO2 fluxes between atmosphere, ocean and land inferred ©2013. American Geophysical Union. All Rights Reserved
    corecore