7 research outputs found

    A GC-MS Method for the Determination of Isoxsuprine in Biological Fluids of the Horse Utilizing Electron Impact Ionization

    Get PDF
    Isoxsuprine is used to treat navicular disease and other lower-limb problems in the horse. Isoxsuprine is regulated as a class 4 compound by the Association of Racing Commissioners, International (ARCI) and, thus, requires regulatory monitoring. A gas chromatography-mass spectrometry method utilizing electron impact ionization was developed and validated for the quantitation of isoxsuprine in equine plasma or equine urine. The method utilized robotic solid-phase extraction and tri-methyl silyl ether products of derivatization. Products were bis-trimethylsilyl (TMS) isoxsuprine and tris-TMS ritodrine, which released intense quantifier ions m/z 178 for isoxsuprine and m/z 236 for ritodrine that were products of C-C cleavage. To our knowledge, this procedure is faster and more sensitive than other methods in the literature. Concentrations in urine and plasma of isoxsuprine were determined from a calibrator curve that was generated along with unknowns. Ritodrine was used as an internal standard and was, therefore, present in all samples, standards, and blanks. Validation data was also collected. The limit of detection of isoxsuprine in plasma was determined to be 2 ng/mL, the limit of quantitation of isoxsuprine in plasma was determined to be \u3c 5 ng/mL. The mean coefficient of determination for the calibrator curves for plasma was 0.9925 ± 0.0052 and for calibrator curves for urine 0.9904 ± 0.0075. The recovery efficiencies at concentrations of 50, 200, and 300 ng/mL were 76%, 73%, and 76%, respectively, in plasma and 92%, 89% and 91% in urine

    The Mare Reproductive Loss Syndrome and the Eastern Tent Caterpillar: A Toxicokinetic/Statistical Analysis With Clinical, Epidemiologic, and Mechanistic Implications

    Get PDF
    During 2001, central Kentucky experienced acute transient epidemics of early and late fetal losses, pericarditis, and unilateral endophthalmitis, collectively referred to as mare reproductive loss syndrome (MRLS). A toxicokinetic/statistical analysis of experimental and field MRLS data was conducted using accelerated failure time (AFT) analysis of abortions following administration of Eastern tent caterpillars (ETCs; 100 or 50 g/day or 100 g of irradiated caterpillars/day) to late-term pregnant mares. In addition, 2001 late-term fetal loss field data were used in the analysis. Experimental data were fitted by AFT analysis at a high (P \u3c .0001) significance. Times to first abortion (“lag time”) and abortion rates were dose dependent. Lag times decreased and abortion rates increased exponentially with dose. Calculated dose × response data curves allow interpretation of abortion data in terms of “intubated ETC equivalents.” Analysis suggested that field exposure to ETCs in 2001 in central Kentucky commenced on approximately April 27, was initially equivalent to approximately 5 g of intubated ETCs/day, and increased to approximately 30 g/day at the outbreak peak. This analysis accounts for many aspects of the epidemiology, clinical presentations, and manifestations of MRLS. It allows quantitative interpretation of experimental and field MRLS data and has implications for the basic mechanisms underlying MRLS. The results support suggestions that MRLS is caused by exposure to or ingestion of ETCs. The results also show that high levels of ETC exposure produce intense, focused outbreaks of MRLS, closely linked in time and place to dispersing ETCs, as occurred in central Kentucky in 2001. With less intense exposure, lag time is longer and abortions tend to spread out over time and may occur out of phase with ETC exposure, obscuring both diagnosis of this syndrome and the role of the caterpillars

    Development of a method for the detection and confirmation of the alpha-2 agonist amitraz and its major metabolite in horse urine

    Get PDF
    Amitraz (N′-(2,4-dimethylphenyl)-N-[[(2,4-dimethylphenyl)imino] methyl]-N-methyl-methanimidamide) is an alpha-2 adrenergic agonist used in veterinary medicine primarily as a scabicide- or acaricide-type insecticide. As an alpha-2 adrenergic agonist, it also has sedative/tranquilizing properties and is, therefore, listed as an Association of Racing Commissioners International Class 3 Foreign Substance, indicating its potential to influence the outcome of horse races. We identified the principal equine metabolite of amitraz as N-2,4-dimethylphenyl-N′-methylformamidine by electrospray ionization(+)-mass spectrometry and developed a gas chromatographic-mass spectrometric (GC-MS) method for its detection, quantitation, and confirmation in performance horse regulation. The GC-MS method involves derivatization with t-butyldimethylsilyl groups; selected ion monitoring (SIM) of m/z 205 (quantifier ion), 278, 261, and 219 (qualifier ions); and elaboration of a calibration curve based on ion area ratios involving simultaneous SIM acquisition of an internal standard m/z 208 quantifier ion based on an in-house synthesized d6 deuterated metabolite. The limit of detection of the method is approximately 5 ng/mL in urine and is sufficiently sensitive to detect the peak urinary metabolite at 1 h post dose, following administration of amitraz at a 75-mg/horse intraveneous dose

    Detection and Confirmation of Ractopamine and Its Metabolites in Horse Urine after Paylean® Administration

    Get PDF
    We have investigated the detection, confirmation, and metabolism of the beta-adrenergic agonist ractopamine administered as Paylean to the horse. A Testing Components Corporation enzyme-linked imunosorbent assay (ELISA) kit for ractopamine displayed linear response between 1.0 and 100 ng/ml, with an 1-50 of 10 ng/ml, and an effective screening limit of detection of 50 ng/mL. The kit was readily able to detect ractopamine equivalents in unhydrolyzed urine up to 24 h following a 300-mg oral dose. Gas chromatography-mass spectrometry (GC-MS) confirmation comprised glucuronidase treatment, solid-phase extraction, and trimethylsilyl derivatization, with selected-ion monitoring of ractopamine-tris(trimethylsilane) (TMS) m/z 267, 250, 179, and 502 ions. Quantitation was elaborated in comparison to a 445 Mw isoxsuprine-bis(TMS) internal standard monitored simultaneously. The instrumental limit of detection, defined as that number of ng on column for which signal-to-noise ratios for one or more diagnostic ions fell below a value of three, was 0.1 ng, corresponding to roughly 5 ng/mL in matrix. Based on the quantitation ions for ractopamine standards extracted from urine, standard curves showed a linear response for ractopamine concentrations between 10 and 100 ng/mL with a correlation coefficient r \u3e 0.99, whereas standards in the concentration range of 10-1000 ng/mL were fit to a second-order regression curve with r \u3e 0.99. The lower limit of detection for ractopamine in urine, defined as the lowest concentration at which the identity of ractopamine could be confirmed by comparison of diagnostic MS ion ratios, ranged between 25 and 50 ng/mL. Urine concentration of parent ractopamine 24 h post-dose was measured at 360 ng/mL by GC-MS after oral administration of 300 mg. Urinary metabolites were identified by electrospray ionization (+) tandem quadrupole mass spectrometry and were shown to include glucuronide, methyl, and mixed methyl-glucuronide conjugates. We also considered the possibility that an unusual conjugate added 113 amu to give an observed m/z 415 [M+H] species or two times 113 amu to give an m/z 528 [M+H] species with a daughter ion mass spectrum related to the previous one. Sulfate and mixed methyl-sulfate conjugates were revealed following glucuronidase treatment, suggesting that sulfation occurs in combination with glucuronidation. We noted a paired chromatographic peak phenomenon of apparent ractopamine metabolites appearing as doublets of equivalent intensity with nearly identical mass spectra on GC-MS and concluded that this phenomenon is consistent with Paylean being a mixture of RR, RS, SR, and SS diastereomers of ractopamine. The results suggest that ELISA-based screening followed by glucuronide hydrolysis, parent drug recovery, and TMS derivatization provide an effective pathway for detection and GC-MS confirmation of ractopamine in equine urine

    Remifentanil in the Horse: Identification and Detection of its Major Urinary Metabolite

    Get PDF
    Remifentanil (4-methoxycarbonyl-4-[(1-oxopropyl)phyenylamino]-1- piperidinepropionic acid methyl ester) is a ÎĽ-opioid receptor agonist with considerable abuse potential in racing horses. The identification of its major equine urinary metabolite, 4-methoxycarbonyl-4-[(1- oxopropyl)phenylamino]-1-piperidinepropionic acid, an ester hydrolysis product of remifentanil is reported. Administration of remifentanil HCl (5 mg, intravenous) produced clear-cut locomotor responses, establishing the clinical efficacy of this dose. ELISA analysis of postadministration urine samples readily detected fentanyl equivalents in these samples. Mass spectrometric analysis, using solid-phase extraction and trimethylsilyl (TMS) derivatization, showed the urine samples contained parent remifentanil in low concentrations, peaking at 1 h. More significantly, a major peak was identified as representing 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]-1- piperidinepropionic acid, arising from ester hydrolysis of remifentanil. This metabolite reached its maximal urinary concentrations at 1 h and was present at up to 10-fold greater concentrations than parent remifentanil. Base hydrolysis of remifentanil yielded a carboxylic acid with the same mass spectral characteristics as those of the equine metabolite. In summary, these data indicate that remifentanil administration results in the appearance of readily detectable amounts of 4-methoxycarbonyl-4-[(1-oxopropyl)phenylamino]- 1-piperidinepropionic acid in urine. On this basis, screening and confirmation tests for this equine urinary metabolite should be optimized for forensic control of remifentanil
    corecore