238 research outputs found
Lower Left Ventricular Ejection Fraction Relates to Cerebrospinal Fluid Biomarker Evidence of Neurodegeneration in Older Adults
BACKGROUND: Subclinical cardiac dysfunction is associated with decreased cerebral blood flow, placing the aging brain at risk for Alzheimer's disease (AD) pathology and neurodegeneration. OBJECTIVE: This study investigates the association between subclinical cardiac dysfunction, measured by left ventricular ejection fraction (LVEF), and cerebrospinal fluid (CSF) biomarkers of AD and neurodegeneration. METHODS: Vanderbilt Memory & Aging Project participants free of dementia, stroke, and heart failure (n = 152, 72±6 years, 68% male) underwent echocardiogram to quantify LVEF and lumbar puncture to measure CSF levels of amyloid-β42 (Aβ42), phosphorylated tau (p-tau), and total tau (t-tau). Linear regressions related LVEF to CSF biomarkers, adjusting for age, sex, race/ethnicity, education, Framingham Stroke Risk Profile, cognitive diagnosis, and apolipoprotein E ɛ4 status. Secondary models tested an LVEF x cognitive diagnosis interaction and then stratified by diagnosis (normal cognitive (NC), mild cognitive impairment (MCI)). RESULTS: Higher LVEF related to decreased CSF Aβ42 levels (β= -6.50, p = 0.04) reflecting greater cerebral amyloid accumulation, but this counterintuitive result was attenuated after excluding participants with cardiovascular disease and atrial fibrillation (p = 0.07). We observed an interaction between LVEF and cognitive diagnosis on CSF t-tau (p = 0.004) and p-tau levels (p = 0.002), whereas lower LVEF was associated with increased CSF t-tau (β= -9.74, p = 0.01) and p-tau in the NC (β= -1.41, p = 0.003) but not MCI participants (p-values>0.13). CONCLUSIONS: Among cognitively normal older adults, subclinically lower LVEF relates to greater molecular evidence of tau phosphorylation and neurodegeneration. Modest age-related changes in cardiovascular function may have implications for pathophysiological changes in the brain later in life
The relationship between white matter microstructure and self-perceived cognitive decline
Subjective cognitive decline (SCD) is a perceived cognitive change prior to objective cognitive deficits, and although it is associated with Alzheimer's disease (AD) pathology, it likely results from multiple underlying pathologies. We investigated the association of white matter microstructure to SCD as a sensitive and early marker of cognitive decline and quantified the contribution of white matter microstructure separate from amyloidosis. Vanderbilt Memory & Aging Project participants with diffusion MRI data and a 45-item measure of SCD were included [n = 236, 137 cognitively unimpaired (CU), 99 with mild cognitive impairment (MCI), 73 ± 7 years, 37% female]. A subset of participants (64 CU, 40 MCI) underwent a fasting lumbar puncture for quantification of cerebrospinal fluid (CSF) amyloid-β(CSF Aβ42), total tau (CSF t-tau), and phosphorylated tau (CSF p-tau). Diffusion MRI data was post-processed using the free-water (FW) elimination technique, which allowed quantification of extracellular (FW) and intracellular compartment (fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity) microstructure. Microstructural values were quantified within 11 cognitive-related white matter tracts, including medial temporal lobe, frontal transcallosal, and fronto-parietal tracts using a region of interest approach. General linear modeling related each tract to SCD scores adjusting for age, sex, race/ethnicity, education, Framingham Stroke Risk Profile scores, APOE ε4 carrier status, diagnosis, Geriatric Depression Scale scores, hippocampal volume, and total white matter volume. Competitive models were analyzed to determine if white matter microstructural values have a unique role in SCD scores separate from CSF Aβ42. FW-corrected radial diffusivity (RDT) was related to SCD scores in 8 tracts: cingulum bundle, inferior longitudinal fasciculus, as well as inferior frontal gyrus (IFG) pars opercularis, IFG orbitalis, IFG pars triangularis, tapetum, medial frontal gyrus, and middle frontal gyrus transcallosal tracts. While CSF Aβ42 was related to SCD scores in our cohort (Radj2 = 39.03%; β = −0.231; p = 0.020), competitive models revealed that fornix and IFG pars triangularis transcallosal tract RDT contributed unique variance to SCD scores beyond CSF Aβ42 (Radj2 = 44.35% and Radj2 = 43.09%, respectively), with several other tract measures demonstrating nominal significance. All tracts which demonstrated nominal significance (in addition to covariates) were input into a backwards stepwise regression analysis. ILF RDT, fornix RDT, and UF FW were best associated with SCD scores (Radj2 = 46.69%; p = 6.37 × 10-12). Ultimately, we found that medial temporal lobe and frontal transcallosal tract microstructure is an important driver of SCD scores independent of early amyloid deposition. Our results highlight the potential importance of abnormal white matter diffusivity as an early contributor to cognitive decline. These results also highlight the value of incorporating multiple biomarkers to help disentangle the mechanistic heterogeneity of SCD as an early stage of cognitive decline
Cerebrospinal fluid and plasma neurofilament light relate to abnormal cognition
Introduction
Neuroaxonal damage may contribute to cognitive changes preceding clinical dementia. Accessible biomarkers are critical for detecting such damage.
Methods
Plasma and cerebrospinal fluid (CSF) neurofilament light (NFL) were related to neuropsychological performance among Vanderbilt Memory & Aging Project participants (plasma n = 333, 73 ± 7 years; CSF n = 149, 72 ± 6 years) ranging from normal cognition (NC) to mild cognitive impairment (MCI). Models adjusted for age, sex, race/ethnicity, education, apolipoprotein E ε4 carriership, and Framingham Stroke Risk Profile.
Results
Plasma NFL was related to all domains (P values ≤ .008) except processing speed (P values ≥ .09). CSF NFL was related to memory and language (P values ≤ .04). Interactions with cognitive diagnosis revealed widespread plasma associations, particularly in MCI participants, which were further supported in head-to-head comparison models.
Discussion
Plasma and CSF NFL (reflecting neuroaxonal injury) relate to cognition among non-demented older adults albeit with small to medium effects. Plasma NFL shows particular promise as an accessible biomarker with relevance to cognition in MCI
Mild Cognitive Impairment Staging Yields Genetic Susceptibility, Biomarker, and Neuroimaging Differences
INTRODUCTION: While Alzheimer’s disease (AD) is divided into severity stages, mild cognitive impairment (MCI) remains a solitary construct despite clinical and prognostic heterogeneity. This study aimed to characterize differences in genetic, cerebrospinal fluid (CSF), neuroimaging, and neuropsychological markers across clinician-derived MCI stages. METHODS: Vanderbilt Memory & Aging Project participants with MCI were categorized into 3 severity subtypes at screening based on neuropsychological assessment, functional assessment, and Clinical Dementia Rating interview, including mild (n = 18, 75 ± 8 years), moderate (n = 89 72 ± 7 years), and severe subtypes (n = 18, 78 ± 8 years). At enrollment, participants underwent neuropsychological testing, 3T brain magnetic resonance imaging (MRI), and optional fasting lumbar puncture to obtain CSF. Neuropsychological testing and MRI were repeated at 18-months, 3-years, and 5-years with a mean follow-up time of 3.3 years. Ordinary least square regressions examined cross-sectional associations between MCI severity and apolipoprotein E (APOE)-ε4 status, CSF biomarkers of amyloid beta (Aβ), phosphorylated tau, total tau, and synaptic dysfunction (neurogranin), baseline neuroimaging biomarkers, and baseline neuropsychological performance. Longitudinal associations between baseline MCI severity and neuroimaging and neuropsychological trajectory were assessed using linear mixed effects models with random intercepts and slopes and a follow-up time interaction. Analyses adjusted for baseline age, sex, race/ethnicity, education, and intracranial volume for MRI models. RESULTS: Stages differed at baseline on APOE-ε4 status (early middle = late), phosphorylated and total tau (early = middle < late; p-values < 0.05), and neurogranin concentrations (early = middle < late; p-values < 0.05). MCI stage related to greater longitudinal cognitive decline, hippocampal atrophy, and inferior lateral ventricle dilation (early < late; p-values < 0.03). DISCUSSION: Clinician staging of MCI severity yielded longitudinal cognitive trajectory and structural neuroimaging differences in regions susceptible to AD neuropathology and neurodegeneration. As expected, participants with more severe MCI symptoms at study entry had greater cognitive decline and gray matter atrophy over time. Differences are likely attributable to baseline differences in amyloidosis, tau, and synaptic dysfunction. MCI staging may provide insight into underlying pathology, prognosis, and therapeutic targets
The pestivirus N terminal protease N(pro) redistributes to mitochondria and peroxisomes suggesting new sites for regulation of IRF3 by N(pro.)
The N-terminal protease of pestiviruses, N(pro) is a unique viral protein, both because it is a distinct autoprotease that cleaves itself from the following polyprotein chain, and also because it binds and inactivates IRF3, a central regulator of interferon production. An important question remains the role of N(pro) in the inhibition of apoptosis. In this study, apoptotic signals induced by staurosporine, interferon, double stranded RNA, sodium arsenate and hydrogen peroxide were inhibited by expression of wild type N(pro), but not by mutant protein N(pro) C112R, which we show is less efficient at promoting degradation of IRF3, and led to the conclusion that N(pro) inhibits the stress-induced intrinsic mitochondrial pathway through inhibition of IRF3-dependent Bax activation. Both expression of N(pro) and infection with Bovine Viral Diarrhea Virus (BVDV) prevented Bax redistribution and mitochondrial fragmentation. Given the role played by signaling platforms during IRF3 activation, we have studied the subcellular distribution of N(pro) and we show that, in common with many other viral proteins, N(pro) targets mitochondria to inhibit apoptosis in response to cell stress. N(pro) itself not only relocated to mitochondria but in addition, both N(pro) and IRF3 associated with peroxisomes, with over 85% of N(pro) puncta co-distributing with PMP70, a marker for peroxisomes. In addition, peroxisomes containing N(pro) and IRF3 associated with ubiquitin. IRF3 was degraded, whereas N(pro) accumulated in response to cell stress. These results implicate mitochondria and peroxisomes as new sites for IRF3 regulation by N(pro), and highlight the role of these organelles in the anti-viral pathway
Axonal Injury Partially Mediates Associations Between Increased Left Ventricular Mass Index and White Matter Damage
BACKGROUND AND PURPOSE: Left ventricular (LV) mass index is a marker of subclinical LV remodeling that relates to white matter damage in aging, but molecular pathways underlying this association are unknown. This study assessed if LV mass index related to cerebrospinal fluid (CSF) biomarkers of microglial activation (sTREM2 [soluble triggering receptor expressed on myeloid cells 2]), axonal injury (NFL [neurofilament light]), neurodegeneration (total-tau), and amyloid-β, and whether these biomarkers partially accounted for associations between increased LV mass index and white matter damage. We hypothesized higher LV mass index would relate to greater CSF biomarker levels, and these pathologies would partially mediate associations with cerebral white matter microstructure. METHODS: Vanderbilt Memory and Aging Project participants who underwent cardiac magnetic resonance, lumbar puncture, and diffusion tensor imaging (n=142, 72±6 years, 37% mild cognitive impairment [MCI], 32% APOE-ε4 positive, LV mass index 51.4±8.1 g/m2, NFL 1070±588 pg/mL) were included. Linear regressions and voxel-wise analyses related LV mass index to each biomarker and diffusion tensor imaging metrics, respectively. Follow-up models assessed interactions with MCI and APOE-ε4. In models where LV mass index significantly related to a biomarker and white matter microstructure, we assessed if the biomarker mediated white matter associations. RESULTS: Among all participants, LV mass index was unrelated to CSF biomarkers (P>0.33). LV mass index interacted with MCI (P=0.01), such that higher LV mass index related to increased NFL among MCI participants. Associations were also present among APOE-ε4 carriers (P=0.02). NFL partially mediated up to 13% of the effect of increased LV mass index on white matter damage. CONCLUSIONS: Subclinical cardiovascular remodeling, measured as an increase in LV mass index, is associated with neuroaxonal degeneration among individuals with MCI and APOE-ɛ4. Neuroaxonal degeneration partially reflects associations between higher LV mass index and white matter damage. Findings highlight neuroaxonal degeneration, rather than amyloidosis or microglia, may be more relevant in pathways between structural cardiovascular remodeling and white matter damage
Association of Aortic Stiffness With Biomarkers of Neuroinflammation, Synaptic Dysfunction, and Neurodegeneration
OBJECTIVES: To test the hypothesis that increased aortic stiffening is associated with greater cerebrospinal fluid (CSF) evidence of core Alzheimer's disease pathology (Aβ, phosphorylated tau (p-tau)), neurodegeneration (total tau (t-tau)), synaptic dysfunction (neurogranin), neuroaxonal injury (neurofilament light (NFL)), and neuroinflammation (YKL-40, sTREM2), we analyzed pulse wave velocity (PWV) data and CSF data among older adults. METHODS: Participants free of stroke and dementia from the Vanderbilt Memory and Aging Project, an observational community-based study, underwent cardiac magnetic resonance to assess aortic pulse wave velocity (PWV, m/sec) and lumbar puncture to obtain CSF. Linear regressions related aortic PWV to CSF Aβ, p-tau, t-tau, neurogranin, NFL, YKL-40, and sTREM2 concentrations adjusting for age, race/ethnicity, education, apolipoprotein (APOE) ε4 status, Framingham Stroke Risk Profile, and cognitive diagnosis. Models were repeated testing PWV interactions with age, diagnosis, APOE-ε4, and hypertension on each biomarker. RESULTS: 146 participants were examined (72±6 years). Aortic PWV interacted with age on p-tau (β=0.31, p=0.04), t-tau, (β=2.67, p=0.05), neurogranin (β=0.94, p=0.04), and sTREM2 (β=20.4, p=0.05). Among participants over age 73 years, higher aortic PWV related to higher p-tau (β=2.4, p=0.03), t-tau (β=19.3, p=0.05), neurogranin (β=8.4, p=0.01), and YKL-40 concentrations (β=7880, p=0.005). Aortic PWV had modest interactions with diagnosis on neurogranin (β=-10.76, p=0.03) and hypertension status on YKL-40 (β=-18020, p<0.001). CONCLUSIONS: Among our oldest participants, age 74 years and older, greater aortic stiffening is associated with in vivo biomarker evidence of neuroinflammation, tau phosphorylation, synaptic dysfunction, and neurodegeneration, but not amyloidosis. Central arterial stiffening may lead to cumulative cerebral microcirculatory damage and blood flow delivery to tissue, resulting in neuroinflammation and neurodegeneration in more advanced age
Environment Orientation : a structured simulation approach for agent-based complex systems
Complex systems are collections of independent agents interacting with each other and with their environment to produce emergent behaviour. Agent-based computer simulation is one of the main ways of studying complex systems. A naive approach to such simulation can fare poorly, due to large communication overhead, and due to the scope for deadlock between the interacting agents sharing a computational platform. Agent interaction can instead be considered entirely from the point of view of the environment(s) within which the agents interact. Structuring a simulation using such Environment Orientation leads to a simulation that reduces communication overhead, that is effectively deadlock-free, and yet still behaves in the manner required. Additionally the Environment Orientation architecture eases the development of more sophisticated large-scale simulations, with multiple kinds of complex agents, situated in and interacting with multiple kinds of environments. We describe the Environment Orientation simulation architecture. We report on a number of experiments that demonstrate the effectiveness of the Environment Orientation approach: a simple flocking system, a flocking system with multiple sensory environments, and a flocking system in an external environment
Adverse Vascular Risk Relates to Cerebrospinal Fluid Biomarker Evidence of Axonal Injury in the Presence of Alzheimer's Disease Pathology
BACKGROUND: Vascular risk factors promote cerebral small vessel disease and neuropathological changes, particularly in white matter where large-caliber axons are located. How Alzheimer's disease pathology influences the brain's vulnerability in this regard is not well understood. OBJECTIVE: Systemic vascular risk was assessed in relation to cerebrospinal fluid concentrations of neurofilament light, a biomarker of large-caliber axonal injury, evaluating for interactions by clinical and protein markers of Alzheimer's disease. METHODS: Among Alzheimer's Disease Neuroimaging Initiative participants with normal cognition (n = 117), mild cognitive impairment (n = 190), and Alzheimer's disease (n = 95), linear regression related vascular risk (as measured by the modified Framingham Stroke Risk Profile) to neurofilament light, adjusting for age, sex, education, and cognitive diagnosis. Interactions were assessed by cognitive diagnosis, and by cerebrospinal fluid markers of Aβ42, hyperphosphorylated tau, and total tau. RESULTS: Vascular risk and neurofilament light were not related in the main effect model (p = 0.08). However, interactions emerged for total tau (p = 0.01) and hyperphosphorylated tau (p = 0.002) reflecting vascular risk becoming more associated with cerebrospinal fluid neurofilament light in the context of greater concentrations of tau biomarkers. An interaction also emerged for the Alzheimer's disease biomarker profiles (p = 0.046) where in comparison to the referent 'normal' biomarker group, individuals with abnormal levels of both Aβ_{42} and total tau showed stronger associations between vascular risk and neurofilament light. CONCLUSION: Older adults may be more vulnerable to axonal injury in response to higher vascular risk burdens in the context of concomitant Alzheimer's disease pathology
- …