80 research outputs found

    Post-Operative Radiotherapy for Soft Tissue Sarcoma of the Anterior Compartment of the Thigh: Should the Sartorius Muscle be Included?

    Get PDF
    Purpose: The clinical target volume (CTV) of post-operative radiotherapy for soft tissue sarcoma of the limbs conventionally includes the whole of the transverse cross-section of the affected anatomical compartment. In the anterior thigh sartorius appears to lie within its own fascial compartment and can be safely excluded. We investigated the potential impact of omitting sartorius from the anterior muscle compartment on patients with soft tissue sarcoma of the thigh

    The Anatomy of Sartorius Muscle and its Implications for Sarcoma Radiotherapy

    Get PDF
    Purpose: Controversy exists as to whether sartorius muscle is completely invested in fascia. If it is, then direct tumour involvement from soft tissue sarcoma of the anterior thigh would be unlikely and would justify omitting sartorius from the radiotherapy volume

    Identifying risk factors for L'Hermitte's sign after IMRT for head and neck cancer.

    Get PDF
    BACKGROUND L’Hermitte’s sign (LS) after chemoradiotherapy for head and neck cancer appears related to higher spinal cord doses. IMRT plans limit spinal cord dose, but the incidence of LS remains high. METHODS 117 patients treated with TomoTherapy™ between 2008 and 2015 prospectively completed a side-effect questionnaire (VoxTox Trial Registration: UK CRN ID 13716). Baseline patient and treatment data were collected. Radiotherapy plans were analysed; mean and maximum spinal cord dose and volumes receiving 10, 20, 30 and 40 Gy were recorded. Dose variation across the cord was examined. These data were included in a logistic regression model. RESULTS 42 patients (35.9%) reported LS symptoms. Concurrent weekly cisplatin did not increase LS risk (p = 0.70, OR = 1.23 {95%CI 0.51 – 2.34}). Of 13 diabetic participants (9 taking metformin), only 1 developed LS (p = 0.025, OR = 0.13 {95%CI 0.051 – 3.27}). A refined binary logistic regression model showed that patients receiving unilateral radiation (p = 0.019, OR = 2.06 {95%CI 0.15 – 0.84}) were more likely to develop LS. Higher V40Gy (p = 0.047, OR = 1.06 {95%CI 1.00 – 1.12}), and younger age (mean age 56.6 vs 59.7, p = 0.060, OR = 0.96 {95%CI 0.92 – 1.00}) were associated with elevated risk of LS, with borderline significance. CONCLUSIONS In this cohort, concomitant cisplatin did not increase risk, and LS incidence was lower in diabetic patients. Patient age and dose gradients across the spinal cord may be important factors

    Prognostic value of test(s) for O6-methylguanine–DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide

    Get PDF
    BACKGROUND: Glioblastoma is an aggressive form of brain cancer. Approximately five in 100 people with glioblastoma survive for five years past diagnosis. Glioblastomas that have a particular modification to their DNA (called methylation) in a particular region (the O(6)‐methylguanine–DNA methyltransferase (MGMT) promoter) respond better to treatment with chemotherapy using a drug called temozolomide. OBJECTIVES: To determine which method for assessing MGMT methylation status best predicts overall survival in people diagnosed with glioblastoma who are treated with temozolomide. SEARCH METHODS: We searched MEDLINE, Embase, BIOSIS, Web of Science Conference Proceedings Citation Index to December 2018, and examined reference lists. For economic evaluation studies, we additionally searched NHS Economic Evaluation Database (EED) up to December 2014. SELECTION CRITERIA: Eligible studies were longitudinal (cohort) studies of adults with diagnosed glioblastoma treated with temozolomide with/without radiotherapy/surgery. Studies had to have related MGMT status in tumour tissue (assessed by one or more method) with overall survival and presented results as hazard ratios or with sufficient information (e.g. Kaplan‐Meier curves) for us to estimate hazard ratios. We focused mainly on studies comparing two or more methods, and listed brief details of articles that examined a single method of measuring MGMT promoter methylation. We also sought economic evaluations conducted alongside trials, modelling studies and cost analysis. DATA COLLECTION AND ANALYSIS: Two review authors independently undertook all steps of the identification and data extraction process for multiple‐method studies. We assessed risk of bias and applicability using our own modified and extended version of the QUality In Prognosis Studies (QUIPS) tool. We compared different techniques, exact promoter regions (5'‐cytosine‐phosphate‐guanine‐3' (CpG) sites) and thresholds for interpretation within studies by examining hazard ratios. We performed meta‐analyses for comparisons of the three most commonly examined methods (immunohistochemistry (IHC), methylation‐specific polymerase chain reaction (MSP) and pyrosequencing (PSQ)), with ratios of hazard ratios (RHR), using an imputed value of the correlation between results based on the same individuals. MAIN RESULTS: We included 32 independent cohorts involving 3474 people that compared two or more methods. We found evidence that MSP (CpG sites 76 to 80 and 84 to 87) is more prognostic than IHC for MGMT protein at varying thresholds (RHR 1.31, 95% confidence interval (CI) 1.01 to 1.71). We also found evidence that PSQ is more prognostic than IHC for MGMT protein at various thresholds (RHR 1.36, 95% CI 1.01 to 1.84). The data suggest that PSQ (mainly at CpG sites 74 to 78, using various thresholds) is slightly more prognostic than MSP at sites 76 to 80 and 84 to 87 (RHR 1.14, 95% CI 0.87 to 1.48). Many variants of PSQ have been compared, although we did not see any strong and consistent messages from the results. Targeting multiple CpG sites is likely to be more prognostic than targeting just one. In addition, we identified and summarised 190 articles describing a single method for measuring MGMT promoter methylation status. AUTHORS' CONCLUSIONS: PSQ and MSP appear more prognostic for overall survival than IHC. Strong evidence is not available to draw conclusions with confidence about the best CpG sites or thresholds for quantitative methods. MSP has been studied mainly for CpG sites 76 to 80 and 84 to 87 and PSQ at CpG sites ranging from 72 to 95. A threshold of 9% for CpG sites 74 to 78 performed better than higher thresholds of 28% or 29% in two of three good‐quality studies making such comparisons

    Diagnostic accuracy of 1p/19q codeletion tests in oligodendroglioma:a comprehensive meta-analysis based on a Cochrane Systematic Review

    Get PDF
    Codeletion of chromosomal arms 1p and 19q, in conjunction with a mutation in the isocitrate dehydrogenase 1 or 2 gene, is the molecular diagnostic criterion for oligodendroglioma, IDH mutant and 1p/19q codeleted. 1p/19q codeletion is a diagnostic marker and allows prognostication and prediction of the best drug response within IDH‐mutant tumours. We performed a Cochrane review and simple economic analysis to establish the most sensitive, specific and cost‐effective techniques for determining 1p/19q codeletion status. Fluorescent in situ hybridisation (FISH) and polymerase chain reaction (PCR)‐based loss of heterozygosity (LOH) test methods were considered as reference standard. Most techniques (FISH, chromogenic in situ hybridisation [CISH], PCR, real‐time PCR, multiplex ligation‐dependent probe amplification [MLPA], single nucleotide polymorphism [SNP] array, comparative genomic hybridisation [CGH], array CGH, next‐generation sequencing [NGS], mass spectrometry and NanoString) showed good sensitivity (few false negatives) for detection of 1p/19q codeletions in glioma, irrespective of whether FISH or PCR‐based LOH was used as the reference standard. Both NGS and SNP array had a high specificity (fewer false positives) for 1p/19q codeletion when considered against FISH as the reference standard. Our findings suggest that G banding is not a suitable test for 1p/19q analysis. Within these limits, considering cost per diagnosis and using FISH as a reference, MLPA was marginally more cost‐effective than other tests, although these economic analyses were limited by the range of available parameters, time horizon and data from multiple healthcare organisations

    Pharmacokinetics, safety and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial

    Get PDF
    Background: The poly(ADP-ribose) polymerase (PARP) inhibitor olaparib potentiated radiation and temozolomide chemotherapy in pre-clinical glioblastoma models but brain penetration was poor. Clinically, PARP inhibitors exacerbate the hematological side-effects of temozolomide. The OPARATIC trial was conducted to measure penetration of recurrent glioblastoma by olaparib, and assess the safety and tolerability of its combination with temozolomide. Methods: Pre-clinical pharmacokinetic studies evaluated olaparib tissue distribution in rats and tumor-bearing mice. Adult patients with recurrent glioblastoma received various doses and schedules of olaparib and low-dose temozolomide in a 3+3 design. Suitable patients received olaparib prior to neurosurgical resection; olaparib concentrations in plasma, tumour core and tumour margin specimens were measured by mass spectrometry. A dose expansion cohort tested tolerability and efficacy of the recommended phase II dose (RP2D). Radiosensitizing effects of olaparib were measured by clonogenic survival in glioblastoma cell lines. Results: Olaparib was a substrate for multi-drug resistance protein-1 and showed no brain penetration in rats but was detected in orthotopic glioblastoma xenografts. Clinically, olaparib was detected in 71/71 tumor core specimens (27 patients, median 496nM) and 21/21 tumor margin specimens (9 patients, median 512.3nM). Olaparib exacerbated TMZ-related hematological toxicity, necessitating intermittent dosing. RP2D was olaparib 150mg (3 days/week) with TMZ 75mg/m2 daily for 42 days. Fourteen (36%) of 39 evaluable patients were progression-free at 6 months. Olaparib radiosensitized six glioblastoma cell lines at clinically relevant concentrations of 100 and 500 nM. Conclusions: Olaparib reliably penetrates recurrent glioblastoma at radiosensitizing concentrations, supporting further clinical development and highlighting the need for better pre-clinical models
    corecore