284 research outputs found
Current distribution inside Py/Cu lateral spin-valve device
We have investigated experimentally the non-local voltage signal (NLVS) in
the lateral permalloy (Py)/Cu/Py spin valve devices with different width of Cu
stripes. We found that NLVS strongly depends on the distribution of the
spin-polarized current inside Cu strip in the vicinity of the Py-detector. To
explain these data we have developed a diffusion model describing spatial (3D)
distribution of the spin-polarized current in the device. The results of our
calculations show that NLVS is decreased by factor of 10 due to spin
flip-scattering occurring at Py/Cu interface. The interface resistivity on
Py/Cu interface is also present, but its contribution to reduction of NLVS is
minor. We also found that most of the spin-polarized current is injected within
the region 30 nm from Py-injector/Cu interface. In the area at Py-detector/Cu
interface, the spin-polarized current is found to flow mainly close on the
injector side, with 1/e exponential decay in the magnitude within the distance
80 nm.Comment: 10 pages, 14 figure
Electron Transport in Hybrid Ferromagnetic/Superconducting Nanostructures
We observe large amplitude changes in the resistance of ferromagnetic (F)
wires at the onset of superconductivity of adjacent superconductors (S). New
sharp peaks of large amplitude are found in the magnetoresistance of the
F-wires. We discuss a new mechanism for the long-range superconducting
proximity effect in F/S nanostructures based on the analysis of the topologies
of actual Fermi-surfaces in ferromagnetic metals.Comment: 7 pages in LaTeX, 5 eps figures. Submitted to the Proceedings of
MS200
Direct demonstration of decoupling of spin and charge currents in nanostructures
The notion of decoupling of spin and charge currents is one of the basic
principles underlying the rapidly expanding feld of Spintronics. However, no
direct demonstration of the phenomenon exists. We report a novel measurement,
in which a non-equilibrium spin population is created by a point-like injection
of current from a ferromagnet across a tunnel barrier into a one dimensional
spin channel, and detected differentially by a pair of ferromagnetic electrodes
placed symmetrically about the injection point. We demonstrate that the spin
current is strictly isotropic about the injection point and, therefore,
completely decoupled from the uni-directional charge current.Comment: 13 pages, 3 figures; accepted for publication in Nano Letter
Delicate Balance Between Regulation and Stimulation at the Antigen Presenting Cell Site Determines the Likelihood of Successful In-Vitro Priming and Enrichment of Leukemia-Reactive T Cells From the NaïVe Donor Repertoire
Immunobiology of allogeneic stem cell transplantation and immunotherapy of hematological disease
Non-equilibrium supercurrent through mesoscopic ferromagnetic weak links
We consider a mesoscopic normal metal, where the spin degeneracy is lifted by
a ferromagnetic exchange field or Zeeman splitting, coupled to two
superconducting reservoirs. As a function of the exchange field or the distance
between the reservoirs, the supercurrent through this device oscillates with an
exponentially decreasing envelope. This phenomenon is similar to the tuning of
a supercurrent by a non-equilibrium quasiparticle distribution between two
voltage-biased reservoirs. We propose a device combining the exchange field and
non-equilibrium effects, which allows us to observe a range of novel phenomena.
For instance, part of the field-suppressed supercurrent can be recovered by a
voltage between the additional probes.Comment: 7 pages, 8 figures, Europhys. Lett., to be published, corrected two
reference
High CD33-antigen loads in peripheral blood limit the efficacy of gemtuzumab ozogamicin |(Mylotarg®) treatment in acute myeloid leukemia patients
Gemtuzumab ozogamicin (Mylotarg®) induces remission in approximately 30% of relapsed AML patients. We previously demonstrated that gemtuzumab infusion results in near-complete CD33 saturation in peripheral blood, and that saturating gemtuzumab levels result in continuous binding and internalization of gemtuzumab due to renewed CD33 expression. We now demonstrate that a high CD33-antigen load in peripheral blood is an independent adverse prognostic factor, likely due to peripheral consumption of gemtuzumab. Indeed, CD33 saturation in bone marrow is significantly reduced (40-90% saturation) as compared with CD33 saturation in corresponding peripheral blood samples (>90%). In vitro, such reduced CD33 saturation levels were strongly related with reduced cell kill. Apparently, high CD33-antigen loads in blood consume gemtuzumab and thereby limit its penetration into bone marrow. Consequently, CD33 saturation in bone marrow is reduced, which hampers efficient cell kill. Therefore, gemtuzumab should be administered at higher or repeated doses, or, preferably, after reduction of the leukemic cell burden by classical chemotherapy
Spin Precession and Oscillations in Mesoscopic Systems
We compare and contrast magneto-transport oscillations in the fully quantum
(single-electron coherent) and classical limits for a simple but illustrative
model. In particular, we study the induced magnetization and spin current in a
two-terminal double-barrier structure with an applied Zeeman field between the
barriers and spin disequilibrium in the contacts. Classically, the spin current
shows strong tunneling resonances due to spin precession in the region between
the two barriers. However, these oscillations are distinguishable from those in
the fully coherent case, for which a proper treatment of the electron phase is
required. We explain the differences in terms of the presence or absence of
coherent multiple wave reflections.Comment: 9 pages, 5 figure
Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors
There has been an intense search in recent years for long-lived
spin-polarized carriers for spintronic and quantum-computing devices. Here we
report that spin polarized quasi-particles in superconducting aluminum layers
have surprisingly long spin-lifetimes, nearly a million times longer than in
their normal state. The lifetime is determined from the suppression of the
aluminum's superconductivity resulting from the accumulation of spin polarized
carriers in the aluminum layer using tunnel spin injectors. A Hanle effect,
observed in the presence of small in-plane orthogonal fields, is shown to be
quantitatively consistent with the presence of long-lived spin polarized
quasi-particles. Our experiments show that the superconducting state can be
significantly modified by small electric currents, much smaller than the
critical current, which is potentially useful for devices involving
superconducting qubits
- …