38 research outputs found

    An experimental study of the effect of high-pressure water jet assisted turning (HPWJAT) on the surface integrity

    Get PDF
    This study deals with the effect of High-Pressure Water Jet Assisted Turning (HPWJAT) of austenitic stainless steels on chip shape and residual stresses. The machining of the austenitic stainless steels represents several difficulties. Recently, research has shown that the introduction of a high-pressure water jet into the gap between the tool and the chip interface is a very satisfactory method for machining applications. In this article, the effect of a high-pressure water jet, directed into the tool–chip interface, on chip shapes breakage and surface integrity in face turning operations of AISI 316L steel has been investigated. Tests have been carried out with a standard cutting tool. The cutting speeds used were 80 and 150 m/min, with a constant feed rate of 0.1 mm/rev and a constant cutting depth of 1 mm. Three jet pressures were used: 20, 50 and 80 MPa. Residual stress profiles have been analysed using the X-ray diffraction method in both longitudinal and transversal directions. The results show that jet pressure and cutting parameters influence the residual stresses and the chip shapes. Using a high-pressure jet, it is possible to create a well fragmented chip in contrast to the continuous chip formed using dry turning. It is also possible to control the chip shape and increase tool life. When the jet pressure is increased the residual stress at the surface decreases; however it is increased by an increase in cutting speed. It can be concluded that surface residual stresses can be reduced by the introduction of a high-pressure water jet

    Comprehension of chip formation in laser assisted machining

    Get PDF
    Laser Assisted Machining (LAM) improves the machinability of materials by locally heating the workpiece just prior to cutting. Experimental investigations have confirmed that the cutting force can be decreased, by as much as 40%, for various materials. In order to understand the effect of the laser on chip formation and on the temperature fields in the different deformation zones, thermo-mechanical simulations were undertaken. A thermo-mechanical model for chip formation was also undertaken. Experimental tests for the orthogonal cutting of 42CrMo4 steel were used to validate the simulation. The temperature fields allow us to explain the reduction in the cutting force and the resulting residual stress fields in the workpiece.Contrat Plan Etat Région (CPER) Pays de la Loir

    A Biaxial Fatigue Specimen for Uniaxial Loading

    Get PDF
    The aim of this paper is to present a novel un-notched fatigue test specimen in which a biaxial stress state is achieved using a uniaxial loading condition. This allows the problem of multi-axial fatigue to be studied using relatively common one-axis servo-hydraulic testing machines. In addition the specimen presented here is very compact and can be made using a small volume of material (100x40x4.5mm). For this specimen, the degree of biaxiality, defined by the parameter is equal to approximately 0.45. The specimen geometry was optimised using the Dang Van multi-axial fatigue criterion. In addition to use as a fatigue specimen, it has been demonstrated that the biaxial specimen presented here is also suitable for biaxial tensile tests, to determine the rupture strength of a material in a biaxial stress state. Two different materials have been investigated: The first was wrought aluminium 2024-O in the form of 5mm sheets. The second was a cast aluminium-silicon alloy AlSi7Cu0.5Mg0.3, commonly used in automotive and aeronautical applications. The fatigue strengths were determined at 2x106 cycles and at various R-ratios using a staircase procedure. For the aluminium 2024, it is shown that the biaxial stress state increases the maximum permissible first principal stress when compared to the uniaxial condition. However, in terms of the cast aluminium alloy, it has been demonstrated that this type of fatigue specimen is not suitable for materials containing casting defects, in particular micro-shrinkage pores, because the volume of material, in which the stress state is biaxial, is not large enough.The authors gratefully acknowledge the financial support of PSA – Peugeot Citroën and also that of the Conseil Général du Département de Maine-et-Loire, France

    Modelling, identification and application of phenomenological constitutive laws over a large strain rate and temperature range

    Get PDF
    A review of the different phenomenological thermo-viscoplastic constitutive models often applied to forging and machining processes is presented. Several of the most common models have been identified using a large experimental database (Hor et al., 2013). The latter consists of the tests were done in compression on cylindrical shaped specimens and in shear using hat-shaped specimens. The comparison between these different models is shown that the group of decoupled empirical constitutive models (e.g. the Johnson and Cook (1983) model), despite their simple identification procedures, are relatively limited, especially over a large range of strain rates and temperatures. Recent studies have led to the proposal of coupled empirical models. Three models in this class have also been studied. The Lurdos (2008) model shows the best accuracy but requires a large experimental database to identify its high number of parameters. After this comparison, a constitutive equation is proposed by modifying the TANH model (Calamaz et al., 2010). Coupling between the effects of strain rate and temperature is introduced. This model is easier to identify and does not require knowledge of the saturation stress. Compared to other models, it better reproduces the experimental results especially in the semi-hot and hot domains. In order to study real machining conditions, an orthogonal cutting tests is considered. The comparison between experimental test results and numerical simulations conducted using the previously identified constitutive models shows that the decoupled empirical models are not capable of reproducing the experimental observations. However, the coupled constitutive models, that take into account softening, improve the accuracy of these simulations

    An experimental study of the effect of high-pressure water jet assisted turning (HPWJAT) on the surface integrity

    Get PDF
    This study deals with the effect of High-Pressure Water Jet Assisted Turning (HPWJAT) of austenitic stainless steels on chip shape and residual stresses. The machining of the austenitic stainless steels represents several difficulties. Recently, research has shown that the introduction of a high-pressure water jet into the gap between the tool and the chip interface is a very satisfactory method for machining applications. In this article, the effect of a high-pressure water jet, directed into the tool–chip interface, on chip shapes breakage and surface integrity in face turning operations of AISI 316L steel has been investigated. Tests have been carried out with a standard cutting tool. The cutting speeds used were 80 and 150 m/min, with a constant feed rate of 0.1 mm/rev and a constant cutting depth of 1 mm. Three jet pressures were used: 20, 50 and 80 MPa. Residual stress profiles have been analysed using the X-ray diffraction method in both longitudinal and transversal directions. The results show that jet pressure and cutting parameters influence the residual stresses and the chip shapes. Using a high-pressure jet, it is possible to create a well fragmented chip in contrast to the continuous chip formed using dry turning. It is also possible to control the chip shape and increase tool life. When the jet pressure is increased the residual stress at the surface decreases; however it is increased by an increase in cutting speed. It can be concluded that surface residual stresses can be reduced by the introduction of a high-pressure water jet

    The influence of laser assistance on the machinability of the titanium alloy Ti555-3

    Get PDF
    The Ti533-3 alloy is a new titanium alloy which is starting to see increased use in the aeronautical domain to improve the durability of components and to optimize the weight/resistance ratio. This alloy is characterized by greater resistance compared to the more commonly used titanium alloys such as Ti6Al4V. However, a disadvantage of the Ti533-3 alloy is that it is very difficult to machine. In this work, the use of laser-assisted machining has been tested to improve chip formation by a thermal softening phenomenon and to improve the machining productivity of the alloy. A parametric investigation of laser assistance on the machinability of the Ti555-3 titanium alloy shows that: (1) the cutting forces can be greatly decreased if the surface temperature is high; (2) the thermal gradient induced by laser heating modifies the surface integrity in terms of strain hardening and residual stresses in the workpiece; and (3) the chip formation mechanisms are also changed, by increasing the sawteeth frequency when using laser assistanc

    Experimental study and local approach modelling of ductile damage in steels over a wide temperature range

    Get PDF
    Several studies have been devoted to the identification and modelling of material damage in different forming processes. The aim of this work is to investigate the commonly used local approach models when applied over a wide temperature range. The models investigated include: the Rice-Tracey model, the Gurson model and its derivatives, and the Rousselier model. In the first section the different techniques used to determine the evolution of material damage are discussed. In-situ tensile tests in a Scanning Electron Microscope were used to identify the origin of the appearance of micro-voids as well as their shape. For the 42CrMo4 steel, Magnesium sulphide inclusions are destroyed, leaving room for elliptical voids. A different mechanism is observed in the 100Cr6 steel in which spherical cavities appear in the ferrite phase. In addition, the evolution of the strain fields is determinate using image correlation software (Correli_Q4). The aim of the second part of this work is to propose changes to the porosity functions of the materials as a function of the strain, degree of triaxiality and temperature. These functions are determined by image analysis of axisymmetrically notched specimens previously deformed under various conditions. The proposed functions are used to extend the above models mentioned above to a wide range of temperatures and strain rates

    Internal Stress Analysis for the Damage Study of a 16MND5 Bainitic Steel

    Get PDF
    The behavior and the fracture mechanisms of the 16MND5 bainitic pressure vessel steel are studied using a local approach of fracture on a crystallographic scale. A series of tensile tests are performed on the material at various temperatures ranging from - 96°C to -60°C: the damage is observed with a Scanning Electron Microscope (SEM) while the residual stresses in the ferritic phase are determined by using the X-Ray Diffraction (XRD), never exceeding -150 MPa in compression. Thanks to these measurements, each stress value can be associated with a microscopie observation in order to couple the behavior of the material with the damage at various temperatures

    A Biaxial Fatigue Specimen for Uniaxial Loading

    Get PDF
    The aim of this paper is to present a novel un-notched fatigue test specimen in which a biaxial stress state is achieved using a uniaxial loading condition. This allows the problem of multi-axial fatigue to be studied using relatively common one-axis servo-hydraulic testing machines. In addition the specimen presented here is very compact and can be made using a small volume of material (100x40x4.5mm). For this specimen, the degree of biaxiality, defined by the parameter is equal to approximately 0.45. The specimen geometry was optimised using the Dang Van multi-axial fatigue criterion. In addition to use as a fatigue specimen, it has been demonstrated that the biaxial specimen presented here is also suitable for biaxial tensile tests, to determine the rupture strength of a material in a biaxial stress state. Two different materials have been investigated: The first was wrought aluminium 2024-O in the form of 5mm sheets. The second was a cast aluminium-silicon alloy AlSi7Cu0.5Mg0.3, commonly used in automotive and aeronautical applications. The fatigue strengths were determined at 2x106 cycles and at various R-ratios using a staircase procedure. For the aluminium 2024, it is shown that the biaxial stress state increases the maximum permissible first principal stress when compared to the uniaxial condition. However, in terms of the cast aluminium alloy, it has been demonstrated that this type of fatigue specimen is not suitable for materials containing casting defects, in particular micro-shrinkage pores, because the volume of material, in which the stress state is biaxial, is not large enough.The authors gratefully acknowledge the financial support of PSA – Peugeot Citroën and also that of the Conseil Général du Département de Maine-et-Loire, France

    Grain and phase stress criteria for behaviour and cleavage in duplex and bainitic steels

    Get PDF
    Stress analyses by X-ray diffraction are performed on a cast duplex (32% ferrite) stainless steel elbow and a bainitic (95% ferrite) pressure vessel steel. During an in situ tensile test, micrographic observations are made (visible glides and microcracks) and related to the stress state determined in the individual ferritic grains (aged duplex) and the ferritic phase (bainite loaded at low temperatures). Several material parameters have been identified at different scales, as for example, the critical resolved shear stress of 245 MPa for the aged ferritic grain (duplex) or 275 MPa for bainite (–60 ◦C), a crystallographic cleavage propagation criterion of 465 MPa (stress normal to {100} planes), and a fracture stress of approximately 700 MPa in the ferritic phase. Even though the two steels are different in many respects, the macroscopic fracture strains and stresses are well predicted by the polycrystalline model developed for bainite, whatever the temperatures tested (considering 7% of the grains reaching the local criterion)
    corecore