7 research outputs found
Process Simulation-based Net Energy Analysis for Future Bioethanol Production as Commercial Biofuel from Waste Rice Straw in Sri Lanka
As the staple food crop in Sri Lanka, paddy rice occupies around 34% (over 0.87 million hectares of land) of the total arable area in the country, corresponding to an average rice production of 3,774,344 t/year. Rice straw is the major biomass waste from rice cultivation, which approximates to an average of 2,830,758 t/year generation at a theoretical straw/grain ratio of 0.75. Open burning of rice straw in paddy fields is the common practice, which could result in an average GHG emissions of 92 kg CO2 eq/t of dry rice straw and other harmful airborne emissions. Application of rice straw into soil as an organic fertiliser is also an inefficient practice, compared to bioenergy generation using rice straw. The average composition of the Sri Lankan rice straw (i.e. 30.0 wt.% cellulose, 3.9 wt.% hemicellulose, 38.2% lignin, 16.1 wt.% wax, and 12.3 wt.% silica) shows the possibility to be used as a second-generation bioethanol feedstock. Existing studies indicate that bioethanol production from rice straw is more environmentally-benign, compared to alternative options, such as gasification for combined heat and power and dimethyl ether (DME) production. This study analyses the net energy indicators of a possible bioethanol production process from rice straw in Sri Lanka. Chemical process simulations using Aspen Plus software were utilised to evaluate the bioethanol production process from rice straw, with a plant output capacity of 1,000 litres/hr of dehydrated bioethanol (99.7 vol.% ethanol) that can be blended with gasoline as a commercial fuel (e.g. E10: 10% bioethanol+gasoline) without any vehicle engine modification. The cradle to gate bioethanol production process from waste rice straw, considered for net energy analysis consists of three major stages: 1. Rice straw preparation, 2. Rice straw transportation, and 3. Bioethanol conversion. The results show that the considered bioethanol production process has a positive net energy gain and increased renewability factor. Detailed analysis indicates that only around 8% of the total process energy consumption is utilised for the bioethanol dehydration operation that is favourable for converting any existing rice straw ethanol plant into commercial gasohol production plant. The sensitivity of bioethanol yield and process energy parameters for the net energy indicator results are further analysed and discussed. The findings from this study can support decision making for a future waste-to-biofuel plant using waste rice straw in Sri Lanka.Keywords: Rice straw, Bioethanol production, Net energy analysis, Process simulation, Waste-to-biofue
Genomic insights into rapid speciation within the worldâs largest tree genus Syzygium
Species radiations, despite immense phenotypic variation, can be difficult to resolve phylogenetically when genetic change poorly matches the rapidity of diversification. Genomic potential furnished by palaeopolyploidy, and relative roles for adaptation, random drift and hybridisation in the apportionment of genetic variation, remain poorly understood factors. Here, we study these aspects in a model radiation, Syzygium, the most species-rich tree genus worldwide. Genomes of 182 distinct species and 58 unidentified taxa are compared against a chromosome-level reference genome of the sea apple, Syzygium grande. We show that while Syzygium shares an ancient genome doubling event with other Myrtales, little evidence exists for recent polyploidy events. Phylogenomics confirms that Syzygium originated in Australia-New Guinea and diversified in multiple migrations, eastward to the Pacific and westward to India and Africa, in bursts of speciation visible as poorly resolved branches on phylogenies. Furthermore, some sublineages demonstrate genomic clines that recapitulate cladogenetic events, suggesting that stepwise geographic speciation, a neutral process, has been important in Syzygium diversification
Process Simulation-based Net Energy Analysis for Future Bioethanol Production as Commercial Biofuel from Waste Rice Straw in Sri Lanka
As the staple food crop in Sri Lanka, paddy rice occupies around 34% (over 0.87 million hectares of land) of the total arable area in the country, corresponding to an average rice production of 3,774,344 t/year. Rice straw is the major biomass waste from rice cultivation, which approximates to an average of 2,830,758 t/year generation at a theoretical straw/grain ratio of 0.75. Open burning of rice straw in paddy fields is the common practice, which could result in an average GHG emissions of 92 kg CO2 eq/t of dry rice straw and other harmful airborne emissions. Application of rice straw into soil as an organic fertiliser is also an inefficient practice, compared to bioenergy generation using rice straw. The average composition of the Sri Lankan rice straw (i.e. 30.0 wt.% cellulose, 3.9 wt.% hemicellulose, 38.2% lignin, 16.1 wt.% wax, and 12.3 wt.% silica) shows the possibility to be used as a second-generation bioethanol feedstock. Existing studies indicate that bioethanol production from rice straw is more environmentally-benign, compared to alternative options, such as gasification for combined heat and power and dimethyl ether (DME) production. This study analyses the net energy indicators of a possible bioethanol production process from rice straw in Sri Lanka. Chemical process simulations using Aspen Plus software were utilised to evaluate the bioethanol production process from rice straw, with a plant output capacity of 1,000 litres/hr of dehydrated bioethanol (99.7 vol.% ethanol) that can be blended with gasoline as a commercial fuel (e.g. E10: 10% bioethanol+gasoline) without any vehicle engine modification. The cradle to gate bioethanol production process from waste rice straw, considered for net energy analysis consists of three major stages: 1. Rice straw preparation, 2. Rice straw transportation, and 3. Bioethanol conversion. The results show that the considered bioethanol production process has a positive net energy gain and increased renewability factor. Detailed analysis indicates that only around 8% of the total process energy consumption is utilised for the bioethanol dehydration operation that is favourable for converting any existing rice straw ethanol plant into commercial gasohol production plant. The sensitivity of bioethanol yield and process energy parameters for the net energy indicator results are further analysed and discussed. The findings from this study can support decision making for a future waste-to-biofuel plant using waste rice straw in Sri Lanka.Keywords: Rice straw, Bioethanol production, Net energy analysis, Process simulation, Waste-to-biofue
Survey of Third-Party Parenting Options Associated With Fertility Preservation Available to Patients With Cancer Around the Globe
Contains fulltext :
196278.pdf (publisher's version ) (Open Access)PURPOSE: In the accompanying article, "Analysis of Fertility Preservation Options Available to Patients With Cancer Around the Globe," we showed that specific fertility preservation services may not be offered at various sites around the world because of cultural and legal barriers. We assessed global and regional experiences as well as the legal status of third-party reproduction and adoption to serve as a comprehensive international data set and resource for groups that wish to begin oncofertility interventions. METHODS: We provide data on the legalities of third-party assisted reproductive technologies and other family-building options in the 28 oncofertility-practicing countries surveyed. RESULTS: We found regional and country differences that will be important in the development of tailored resources for physicians and for patient brochures that are sensitive to these local restrictions and cultural norms. CONCLUSION: Because many patients first consult Web-based materials, the formal assessment of the availability of these options provides members of the global oncofertility community with data to which they might otherwise not have ready access to better serve their patients
Vorapaxar in the secondary prevention of atherothrombotic events
Item does not contain fulltextBACKGROUND: Thrombin potently activates platelets through the protease-activated receptor PAR-1. Vorapaxar is a novel antiplatelet agent that selectively inhibits the cellular actions of thrombin through antagonism of PAR-1. METHODS: We randomly assigned 26,449 patients who had a history of myocardial infarction, ischemic stroke, or peripheral arterial disease to receive vorapaxar (2.5 mg daily) or matching placebo and followed them for a median of 30 months. The primary efficacy end point was the composite of death from cardiovascular causes, myocardial infarction, or stroke. After 2 years, the data and safety monitoring board recommended discontinuation of the study treatment in patients with a history of stroke owing to the risk of intracranial hemorrhage. RESULTS: At 3 years, the primary end point had occurred in 1028 patients (9.3%) in the vorapaxar group and in 1176 patients (10.5%) in the placebo group (hazard ratio for the vorapaxar group, 0.87; 95% confidence interval [CI], 0.80 to 0.94; P<0.001). Cardiovascular death, myocardial infarction, stroke, or recurrent ischemia leading to revascularization occurred in 1259 patients (11.2%) in the vorapaxar group and 1417 patients (12.4%) in the placebo group (hazard ratio, 0.88; 95% CI, 0.82 to 0.95; P=0.001). Moderate or severe bleeding occurred in 4.2% of patients who received vorapaxar and 2.5% of those who received placebo (hazard ratio, 1.66; 95% CI, 1.43 to 1.93; P<0.001). There was an increase in the rate of intracranial hemorrhage in the vorapaxar group (1.0%, vs. 0.5% in the placebo group; P<0.001). CONCLUSIONS: Inhibition of PAR-1 with vorapaxar reduced the risk of cardiovascular death or ischemic events in patients with stable atherosclerosis who were receiving standard therapy. However, it increased the risk of moderate or severe bleeding, including intracranial hemorrhage. (Funded by Merck; TRA 2P-TIMI 50 ClinicalTrials.gov number, NCT00526474.)
Evaluation of a quality improvement intervention to reduce anastomotic leak following right colectomy (EAGLE): pragmatic, batched stepped-wedge, cluster-randomized trial in 64 countries
Background: Anastomotic leak affects 8 per cent of patients after right colectomy with a 10-fold increased risk of postoperative death. The EAGLE study aimed to develop and test whether an international, standardized quality improvement intervention could reduce anastomotic leaks. Methods: The internationally intended protocol, iteratively co-developed by a multistage Delphi process, comprised an online educational module introducing risk stratification, an intraoperative checklist, and harmonized surgical techniques. Clusters (hospital teams) were randomized to one of three arms with varied sequences of intervention/data collection by a derived stepped-wedge batch design (at least 18 hospital teams per batch). Patients were blinded to the study allocation. Low- and middle-income country enrolment was encouraged. The primary outcome (assessed by intention to treat) was anastomotic leak rate, and subgroup analyses by module completion (at least 80 per cent of surgeons, high engagement; less than 50 per cent, low engagement) were preplanned. Results: A total 355 hospital teams registered, with 332 from 64 countries (39.2 per cent low and middle income) included in the final analysis. The online modules were completed by half of the surgeons (2143 of 4411). The primary analysis included 3039 of the 3268 patients recruited (206 patients had no anastomosis and 23 were lost to follow-up), with anastomotic leaks arising before and after the intervention in 10.1 and 9.6 per cent respectively (adjusted OR 0.87, 95 per cent c.i. 0.59 to 1.30; P = 0.498). The proportion of surgeons completing the educational modules was an influence: the leak rate decreased from 12.2 per cent (61 of 500) before intervention to 5.1 per cent (24 of 473) after intervention in high-engagement centres (adjusted OR 0.36, 0.20 to 0.64; P < 0.001), but this was not observed in low-engagement hospitals (8.3 per cent (59 of 714) and 13.8 per cent (61 of 443) respectively; adjusted OR 2.09, 1.31 to 3.31). Conclusion: Completion of globally available digital training by engaged teams can alter anastomotic leak rates. Registration number: NCT04270721 (http://www.clinicaltrials.gov)