100 research outputs found

    Unconstrained Scene Text and Video Text Recognition for Arabic Script

    Full text link
    Building robust recognizers for Arabic has always been challenging. We demonstrate the effectiveness of an end-to-end trainable CNN-RNN hybrid architecture in recognizing Arabic text in videos and natural scenes. We outperform previous state-of-the-art on two publicly available video text datasets - ALIF and ACTIV. For the scene text recognition task, we introduce a new Arabic scene text dataset and establish baseline results. For scripts like Arabic, a major challenge in developing robust recognizers is the lack of large quantity of annotated data. We overcome this by synthesising millions of Arabic text images from a large vocabulary of Arabic words and phrases. Our implementation is built on top of the model introduced here [37] which is proven quite effective for English scene text recognition. The model follows a segmentation-free, sequence to sequence transcription approach. The network transcribes a sequence of convolutional features from the input image to a sequence of target labels. This does away with the need for segmenting input image into constituent characters/glyphs, which is often difficult for Arabic script. Further, the ability of RNNs to model contextual dependencies yields superior recognition results.Comment: 5 page

    Reducing the burden of Tuberculosis: an emphasis on improving awareness among caregivers

    Get PDF
    Background: Tuberculosis (TB) is one of the common communicable disease affecting human beings since ancient times. Though effective chemotherapy emerged during 20th century had raised hope towards eliminating TB burden, it still remains as a distant goal. Awareness about TB among close contacts of active disease is of paramount importance in preventing its spread and promoting early diagnosis and treatment. This study aimed to assess the knowledge about tuberculosis among caregivers of tuberculosis patients.Methods: This was a cross sectional study that enrolled 300 subjects who were then caregivers of tuberculosis patients admitted in the Department of Pulmonary Medicine. Subjects were interviewed according to a predesigned panel of questions meant to assess their basic knowledge and perceptions about tuberculosis symptomatology, diagnostic modalities, treatment and prevention.Results: About 90.3% (n=271) of subjects had heard about TB previously and about 37.7% (n=113) considered themselves to be well aware of it. Most of them believed TB to be communicable (90.3%, n=271). Majority believed that TB affects lungs only (n=206, 68.7%), with most commonly perceived symptom being cough (n=285, 95%). Knowledge regarding disposal of sputum was poor (n=110, 36.7%). About 168 (56%) subjects considered usage of face mask by the patient as an effective tool for TB prevention.Conclusions: Caregivers of tuberculosis patients lack proper knowledge about major aspects of the disease. Public awareness and care giver education programs needs to be implemented along with standard TB care to reduce transmission of TB among close contacts

    On Computational Power of Quantum Read-Once Branching Programs

    Full text link
    In this paper we review our current results concerning the computational power of quantum read-once branching programs. First of all, based on the circuit presentation of quantum branching programs and our variant of quantum fingerprinting technique, we show that any Boolean function with linear polynomial presentation can be computed by a quantum read-once branching program using a relatively small (usually logarithmic in the size of input) number of qubits. Then we show that the described class of Boolean functions is closed under the polynomial projections.Comment: In Proceedings HPC 2010, arXiv:1103.226

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    On 17 August 2017, the Advanced LIGO 1 and Virgo 2 detectors observed the gravitational-wave event GW170817-a strong signal from the merger of a binary neutron-star system 3 . Less than two seconds after the merger, a γ-ray burst (GRB 170817A) was detected within a region of the sky consistent with the LIGO-Virgo-derived location of the gravitational-wave source 4-6 . This sky region was subsequently observed by optical astronomy facilities 7 , resulting in the identification 8-13 of an optical transient signal within about ten arcseconds of the galaxy NGC 4993. This detection of GW170817 in both gravitational waves and electromagnetic waves represents the first 'multi-messenger' astronomical observation. Such observations enable GW170817 to be used as a 'standard siren' 14-18 (meaning that the absolute distance to the source can be determined directly from the gravitational-wave measurements) to measure the Hubble constant. This quantity represents the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Here we report a measurement of the Hubble constant that combines the distance to the source inferred purely from the gravitational-wave signal with the recession velocity inferred from measurements of the redshift using the electromagnetic data. In contrast to previous measurements, ours does not require the use of a cosmic 'distance ladder' 19 : the gravitational-wave analysis can be used to estimate the luminosity distance out to cosmological scales directly, without the use of intermediate astronomical distance measurements. We determine the Hubble constant to be about 70 kilometres per second per megaparsec. This value is consistent with existing measurements 20,21 , while being completely independent of them. Additional standard siren measurements from future gravitationalwave sources will enable the Hubble constant to be constrained to high precision

    A gravitational-wave standard siren measurement of the Hubble constant

    Get PDF
    The detection of GW170817 (ref. 1) heralds the age of gravitational-wave multi-messenger astronomy, with the observations of gravitational-wave and electromagnetic emission from the same transient source. On 17 August 2017 the network of Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)2 and Virgo3 detectors observed GW170817, a strong signal from the merger of a binary neutron-star system. Less than two seconds after the merger, a γ-ray burst event, GRB 170817A, was detected consistent with the LIGO–Virgo sky localization region4–6). The sky region was subsequently observed by optical astronomy facilities7, resulting in the identification of an optical transient signal within about 10 arcseconds of the galaxy NGC 4993 (refs 8–13). GW170817 can be used as a standard siren14–18, combining the distance inferred purely from the gravitational-wave signal with the recession velocity arising from the electromagnetic data to determine the Hubble constant. This quantity, representing the local expansion rate of the Universe, sets the overall scale of the Universe and is of fundamental importance to cosmology. Our measurements do not require any form of cosmic ‘distance ladder’19; the gravitational-wave analysis directly estimates the luminosity distance out to cosmological scales. Here we report H0 = kilometres per second per megaparsec, which is consistent with existing measurements20,21, while being completely independent of them

    Beam-induced backgrounds measured in the ATLAS detector during local gas injection into the LHC beam vacuum

    Get PDF
    Inelastic beam-gas collisions at the Large Hadron Collider (LHC), within a few hundred metres of the ATLAS experiment, are known to give the dominant contribution to beam backgrounds. These are monitored by ATLAS with a dedicated Beam Conditions Monitor (BCM) and with the rate of fake jets in the calorimeters. These two methods are complementary since the BCM probes backgrounds just around the beam pipe while fake jets are observed at radii of up to several metres. In order to quantify the correlation between the residual gas density in the LHC beam vacuum and the experimental backgrounds recorded by ATLAS, several dedicated tests were performed during LHC Run 2. Local pressure bumps, with a gas density several orders of magnitude higher than during normal operation, were introduced at different locations. The changes of beam-related backgrounds, seen in ATLAS, are correlated with the local pressure variation. In addition the rates of beam-gas events are estimated from the pressure measurements and pressure bump profiles obtained from calculations. Using these rates, the efficiency of the ATLAS beam background monitors to detect beam-gas events is derived as a function of distance from the interaction point. These efficiencies and characteristic distributions of fake jets from the beam backgrounds are found to be in good agreement with results of beam-gas simulations performed with theFluka Monte Carlo programme
    corecore