4 research outputs found

    Combined optogenetic and electrical stimulation of the sciatic nerve for selective control of sensory fibers

    Get PDF
    IntroductionElectrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation.MethodsThe sciatic nerve was surgically exposed in anesthetized mice (n = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured.ResultsOptically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aβ) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation (p = 0.006, n = 5) and resulted in a 5.5 dB increase in the Aα/Aβ hybrid response amplitude compared to the electrical-only response at equivalent electrical levels (p = 0.003, n = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aβ fiber and myogenic thresholds (p = 0.008, n = 4).DiscussionThe results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aβ fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Combined optogenetic and electrical stimulation of the sciatic nerve for selective control of sensory fibers

    No full text
    INTRODUCTION: Electrical stimulation offers a drug-free alternative for the treatment of many neurological conditions, such as chronic pain. However, it is not easy to selectively activate afferent or efferent fibers of mixed nerves, nor their functional subtypes. Optogenetics overcomes these issues by controlling activity selectively in genetically modified fibers, however the reliability of responses to light are poor compared to electrical stimulation and the high intensities of light required present considerable translational challenges. In this study we employed a combined protocol of optical and electrical stimulation to the sciatic nerve in an optogenetic mouse model to allow for better selectivity, efficiency, and safety to overcome fundamental limitations of electrical-only and optical-only stimulation.METHODS: The sciatic nerve was surgically exposed in anesthetized mice ( n  = 12) expressing the ChR2-H134R opsin via the parvalbumin promoter. A custom-made peripheral nerve cuff electrode and a 452 nm laser-coupled optical fiber were used to elicit neural activity utilizing optical-only, electrical-only, or combined stimulation. Activation thresholds for the individual and combined responses were measured. RESULTS: Optically evoked responses had a conduction velocity of 34.3 m/s, consistent with ChR2-H134R expression in proprioceptive and low-threshold mechanoreceptor (Aα/Aβ) fibers which was also confirmed via immunohistochemical methods. Combined stimulation, utilizing a 1 ms near-threshold light pulse followed by an electrical pulse 0.5 ms later, approximately halved the electrical threshold for activation ( p  = 0.006, n  = 5) and resulted in a 5.5 dB increase in the Aα/Aβ hybrid response amplitude compared to the electrical-only response at equivalent electrical levels ( p  = 0.003, n  = 6). As a result, there was a 3.25 dB increase in the therapeutic stimulation window between the Aα/Aβ fiber and myogenic thresholds ( p  = 0.008, n  = 4). DISCUSSION: The results demonstrate that light can be used to prime the optogenetically modified neural population to reside near threshold, thereby selectively reducing the electrical threshold for neural activation in these fibers. This reduces the amount of light needed for activation for increased safety and reduces potential off-target effects by only stimulating the fibers of interest. Since Aα/Aβ fibers are potential targets for neuromodulation in chronic pain conditions, these findings could be used to develop effective strategies to selectively manipulate pain transmission pathways in the periphery.</p

    Strategies to Promote ResiliencY (SPRY): a randomised embedded multifactorial adaptative platform (REMAP) clinical trial protocol to study interventions to improve recovery after surgery in high-risk patients

    No full text
    Introduction As the population ages, there is interest in strategies to promote resiliency, especially for frail patients at risk of its complications. The physiological stress of surgery in high-risk individuals has been proposed both as an important cause of accelerated age-related decline in health and as a model testing the effectiveness of strategies to improve resiliency to age-related health decline. We describe a randomised, embedded, multifactorial, adaptative platform (REMAP) trial to investigate multiple perioperative interventions, the first of which is metformin and selected for its anti-inflammatory and anti-ageing properties beyond its traditional blood glucose control features.Methods and analysis Within a multihospital, single healthcare system, the Core Protocol for Strategies to Promote ResiliencY (SPRY) will be embedded within both the electronic health record (EHR) and the healthcare culture generating a continuously self-learning healthcare system. Embedding reduces the administrative burden of a traditional trial while accessing and rapidly analysing routine patient care EHR data. SPRY-Metformin is a placebo-controlled trial and is the first SPRY domain evaluating the effectiveness of three metformin dosages across three preoperative durations within a heterogeneous set of major surgical procedures. The primary outcome is 90-day hospital-free days. Bayesian posterior probabilities guide interim decision-making with predefined rules to determine stopping for futility or superior dosing selection. Using response adaptative randomisation, a maximum of 2500 patients allows 77%–92% power, detecting &gt;15% primary outcome improvement. Secondary outcomes include mortality, readmission and postoperative complications. A subset of patients will be selected for substudies evaluating the microbiome, cognition, postoperative delirium and strength.Ethics and dissemination The Core Protocol of SPRY REMAP and associated SPRY-Metformin Domain-Specific Appendix have been ethically approved by the Institutional Review Board and are publicly registered. Results will be publicly available to healthcare providers, patients and trial participants following achieving predetermined platform conclusions.Trial registration number NCT03861767
    corecore