123 research outputs found
Weak lensing, dark matter and dark energy
Weak gravitational lensing is rapidly becoming one of the principal probes of
dark matter and dark energy in the universe. In this brief review we outline
how weak lensing helps determine the structure of dark matter halos, measure
the expansion rate of the universe, and distinguish between modified gravity
and dark energy explanations for the acceleration of the universe. We also
discuss requirements on the control of systematic errors so that the
systematics do not appreciably degrade the power of weak lensing as a
cosmological probe.Comment: Invited review article for the GRG special issue on gravitational
lensing (P. Jetzer, Y. Mellier and V. Perlick Eds.). V3: subsection on
three-point function and some references added. Matches the published versio
Physicochemical composition of wastes and co-located environmental designations at legacy mine sites in the south west of England and Wales: Implications for their resource potential
© 2016 This work examines the potential for resource recovery and/or remediation of metalliferous mine wastes in the south west of England and Wales. It does this through an assessment of the physicochemical composition of several key metalliferous legacy mine waste piles and an analysis of their co-location with cultural, geological and ecological designations. Mine waste samples were taken from 14 different sites and analysed for metal content, mineralogy, paste pH, particle size distribution, total organic carbon and total inorganic carbon. The majority of sites contain relatively high concentrations (in some cases up to several % by mass) of metals and metalloids, including Cu, Zn, As, Pb, Ag and Sn, many of which exceed ecological and/or human health risk guideline concentrations. However, the economic value of metals in the waste could be used to offset rehabilitation costs. Spatial analysis of all metalliferous mine sites in the south west of England and Wales found that around 70% are co-located with at least one cultural, geological and ecological designation. All 14 sites investigated are co-located with designations related to their mining activities, either due to their historical significance, rare species assemblages or geological characteristics. This demonstrates the need to consider the cultural and environmental impacts of rehabilitation and/or resource recovery on such sites. Further work is required to identify appropriate non-invasive methodologies to allow sites to be rehabilitated at minimal cost and disturbance
Measurement of the differential cross section for the production of an isolated photon with associated jet in ppbar collisions at sqrt(s)=1.96 TeV
The process ppbar -> photon + jet + X is studied using 1.0 fb^-1 of data
collected by the D0 detector at the Fermilab Tevatron ppbar collider at a
center-of-mass energy sqrt(s)=1.96 TeV. Photons are reconstructed in the
central rapidity region |y_gamma|<1.0 with transverse momenta in the range
30<Pt_gamma<400 GeV while jets are reconstructed in either the central
|y_jet|15 GeV.
The differential cross section d^3sigma/dPt_gamma dy_gamma dy_jet is measured
as a function of Pt_gamma in four regions, differing by the relative
orientations of the photon and the jet in rapidity. Ratios between the
differential cross sections in each region are also presented. Next-to-leading
order QCD predictions using different parameterizations of parton distribution
functions and theoretical scale choices are compared to the data. The
predictions do not simultaneously describe the measured normalization and
Pt_gamma dependence of the cross section in any of the four measured regions.Comment: 13 pages, 10 figure
Search for jet extinction in the inclusive jet-pT spectrum from proton-proton collisions at s=8 TeV
Published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published articles title, journal citation, and DOI.The first search at the LHC for the extinction of QCD jet production is presented, using data collected with the CMS detector corresponding to an integrated luminosity of 10.7ââfbâ1 of proton-proton collisions at a center-of-mass energy of 8 TeV. The extinction model studied in this analysis is motivated by the search for signatures of strong gravity at the TeV scale (terascale gravity) and assumes the existence of string couplings in the strong-coupling limit. In this limit, the string model predicts the suppression of all high-transverse-momentum standard model processes, including jet production, beyond a certain energy scale. To test this prediction, the measured transverse-momentum spectrum is compared to the theoretical prediction of the standard model. No significant deficit of events is found at high transverse momentum. A 95% confidence level lower limit of 3.3 TeV is set on the extinction mass scale
A chromosome-level Amaranthus cruentus genome assembly highlights gene family evolution and biosynthetic gene clusters that may underpin the nutritional value of this traditional crop
Traditional crops historically provided accessible and affordable nutrition to millions of rural dwellers but have been neglected, with most modern agricultural systems over reliant on a small number of internationally-traded crops. Traditional crops are typically well-adapted to local agro-ecological conditions and many are nutrient-dense. They can play a vital role in local food systems through enhanced nutrition (especially where diets are dominated by starch crops), food security and livelihoods for smallholder farmers, and a climate-resilient and biodiverse agriculture. Using short-read, long-read and phased sequencing technologies we generated a high-quality chromosome-level genome assembly for Amaranthus cruentus, an under-researched crop with micronutrient- and protein-rich leaves and gluten-free seed, but lacking improved varieties, with respect to productivity and quality traits. The 370.9 MB genome demonstrates a shared whole genome duplication with a related species, Amaranthus hypochondriacus. Comparative genome analysis indicates chromosomal loss and fusion events following genome duplication that are common to both species, as well as fission of chromosome 2 in A. cruentus alone, giving rise to a haploid chromosome number of 17 (versus 16 in A. hypochondriacus). Genomic features potentially underlying the nutritional value of this crop include two A. cruentus-specific genes with a likely role in phytic acid synthesis (an anti-nutrient), expansion of ion transporter gene families, and identification of biosynthetic gene clusters conserved within the amaranth lineage. The A. cruentus genome assembly will underpin much-needed research and global breeding efforts to develop improved varieties for economically viable cultivation and realisation of the benefits to global nutrition security and agrobiodiversity
A draft human pangenome reference
Here the Human Pangenome Reference Consortium presents a first draft of the human pangenome reference. The pangenome contains 47 phased, diploid assemblies from a cohort of genetically diverse individuals. These assemblies cover more than 99% of the expected sequence in each genome and are more than 99% accurate at the structural and base pair levels. Based on alignments of the assemblies, we generate a draft pangenome that captures known variants and haplotypes and reveals new alleles at structurally complex loci. We also add 119 million base pairs of euchromatic polymorphic sequences and 1,115 gene duplications relative to the existing reference GRCh38. Roughly 90 million of the additional base pairs are derived from structural variation. Using our draft pangenome to analyse short-read data reduced small variant discovery errors by 34% and increased the number of structural variants detected per haplotype by 104% compared with GRCh38-based workflows, which enabled the typing of the vast majority of structural variant alleles per sample
- âŠ