14 research outputs found

    Transparent and Flexible Radio Frequency (RF) Structures

    Full text link
    With increasing demand for a wearable devices, medical devices, RFID, and small devices, there is a growing interest in the field of transparent and flexible electronics. In order to realize optically transparent and flexible microwave components, novel materials can be used. The combination of new materials and radio frequency (RF) structures can open interesting perspectives for the implementation of cost effective wireless communication system and wearable device design. The transparent and flexible RF structures can facilitate its application in the transparent and curved surfaces. In this dissertation, we present several demonstrations, all based on optically transparent and flexible materials and structures. We firstly demonstrate an optically transparent, flexible, polarization-independent, and broadband microwave absorber. The bow-tie shaped array which possesses double resonances is designed and measured. The combined resonances lead to more than 90% total absorption covering a wide frequency range from 5.8 to 12.2 GHz. Due to the use of thin metal and PDMS, the whole structure is optically transparent and flexible. Secondly, we demonstrate a new method for fabricating transparent and stretchable radiofrequency small antennas by using stretchable micromesh structures. Size reduction is achieved by using the zeroth-order resonant (ZOR) property. The antennas consist of a series of tortuous micromesh structures, which provides a high degree of freedom for stretching when encapsulated in elastomeric polymers and is optically transparent. Accordingly, these antennas can be stretched up to 40% in size without breaking. The resonant frequency of the antennas is linearly reconfigurable from 2.94 GHz to 2.46 GHz upon stretching. Next, we describe an ultra-low profile and flexible triple-polarization antenna. It is realized by using ZOR array antenna with high port-to-port isolation. This flexible antenna is fabricated with a flexible substrate and silver nanowire vias to be used in various wearable applications. Lastly, we demonstrate a dual-band tri-polarized antenna based on half-mode hexagonal (HMH) SIW structure. CRLH HMHSIW antenna and ZOR HMHSIW antenna are designed to have dual-band operating frequencies. This novel antenna can provide much improved wireless communication efficiency for the WBAN system under various incident field angles and polarizations.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147562/1/tjang_1.pd

    18S rRNA Analysis Reveals High Diversity of Phytoplankton with Emphasis on a Naked Dinoflagellate Gymnodinium sp. at the Han River (Korea)

    No full text
    Biomonitoring of phytoplankton communities in freshwater ecosystems is imperative for efficient water quality management. In the present study, we present the seasonal diversity of phytoplankton from the non-reservoir area of the Han River (Korea), assessed using the 18S rRNA amplicon sequencing. Our results uncovered a considerably high eukaryotic diversity, which was predominantly represented by phytoplankton in all the seasons (38–63%). Of these, the diatoms, Cyclostephanos tholiformis, Stephanodiscus hantzschii, and Stephanodiscus sp., were frequently detected in spring and winter. Interestingly, for the first time in the Han River, we detected a large number of operational taxonomic unit (OTU) reads belonging to the naked dinoflagellate Gymnodinium sp., which dominated in autumn (15.8%) and was observed only in that season. Molecular cloning and quantitative real-time polymerase chain reaction (PCR) confirmed the presence of Gymnodinium sp. in the samples collected in 2012 and 2019. Moreover, a comparison of the present data with our previous data from a reservoir area (Paldang Dam) revealed similar patterns of phytoplankton communities. This molecular approach revealed a prospective toxic species that was not detected through microscopy. Collectively, resolving phytoplankton communities at a level relevant for water quality management will provide a valuable reference for future studies on phytoplankton for environmental monitoring

    Comparison of the phytoplankton community compositions between the temperate reservoir and the downstream river areas of the Han River, Korea

    No full text
    AbstractPhytoplankton communities serve as useful bioindicators of environmental changes in aquatic ecosystems and can be used to assess the health of freshwater systems. Their community composition responds sensitively to changes in habitat conditions. As a result, the phytoplankton dynamics of the freshwater reservoir may differ from those of the downstream river. In the present study, we conducted a comparative analysis of the phytoplankton community between a freshwater upstream reservoir (UR) and the downstream river (DR) sections of the temperate freshwater Han River (Korea), using morphological analysis. Both UR and DR exhibited similar seasonal successions of phytoplankton groups. Diatoms dominated in autumn, winter and spring, while cyanobacteria dominated during the summer. However, the composition and frequency of the dominant species varied between UR and DR. Particularly during summer, Anabaena sp. was found to be the most frequent at UR, while Microcystis sp. was the most frequently detected at DR. In addition, high abundances of the chlorophyte Eudorina elegans and the dinoflagellate Unruhdinium penardii var. robustum were found only at DR during the autumn. The dominance and species selection of the phytoplankton community were found to be correlated with water temperature and nutrient concentrations. These results may be helpful to understand the relationship and differences in phytoplankton dynamics in reservoirs and river sections of temperate freshwater and provide guidance for maintaining the health of freshwater systems

    Characteristic Features of Stone-Wales Defects in Single-Walled Carbon Nanotube; Adsorption, Dispersion, and Field Emission

    No full text
    Adsorption behaviors of dodecanethiol (C12H25SH) molecules are investigated on the surface of single-walled carbon nanotubes (SWCNTs) with vibrational and X-ray photoelectron spectrometers. The active adsorption sites are proved as Stone-Wales (SW) defects (5–7 ring defects). The SW defect-removed SWCNTs formed by reacting nanotubes with allyl acrylate molecules are compared with pristine SWCNTs in dispersion and field emission. The former shows higher dispersion and field emission than the latter

    Respiratory pathogen and clinical features of hospitalized patients in acute exacerbation of chronic obstructive pulmonary disease after COVID 19 pandemic

    No full text
    Abstract Respiratory infections are common causes of acute exacerbation of chronic obstructive lung disease (AECOPD). We explored whether the pathogens causing AECOPD and clinical features changed from before to after the coronavirus disease 2019 (COVID-19) outbreak. We reviewed the medical records of patients hospitalized with AECOPD at four university hospitals between January 2017 and December 2018 and between January 2021 and December. We evaluated 1180 patients with AECOPD for whom medication histories were available. After the outbreak, the number of patients hospitalized with AECOPD was almost 44% lower compared with before the outbreak. Patients hospitalized with AECOPD after the outbreak were younger (75 vs. 77 years, p = 0.003) and more often stayed at home (96.6% vs. 88.6%, p < 0.001) than patients of AECOPD before the outbreak. Hospital stay was longer after the outbreak than before the outbreak (10 vs. 8 days. p < 0.001). After the COVID-19 outbreak, the identification rates of S. pneumoniae (15.3 vs. 6.2%, p < 0.001) and Hemophilus influenzae (6.4 vs. 2.4%, p = 0.002) decreased, whereas the identification rates of P. aeruginosa (9.4 vs. 13.7%, p = 0.023), Klebsiella pneumoniae (5.3 vs. 9.8%, p = 0.004), and methicillin-resistant Staphylococcus aureus (1.0 vs. 2.8%, p = 0.023) increased. After the outbreak, the identification rate of influenza A decreased (10.4 vs. 1.0%, p = 0.023). After the outbreak, the number of patients hospitalized with AECOPD was lower and the identification rates of community-transmitted pathogens tended to decrease, whereas the rates of pathogens capable of chronic colonization tended to increase. During the period of large-scale viral outbreaks that require quarantine, patients with AECOPD might be given more consideration for treatment against strains that can colonize chronic respiratory disease rather than community acquired pathogens

    Increased Incidence and Associated Risk Factors of Aspergillosis in Patients with Bronchiectasis

    No full text
    There are insufficient data regarding the relationship between non-cystic fibrosis bronchiectasis and incident aspergillosis. We performed a population-based, matched cohort study using data from the Korean National Health Insurance database between 2003 and 2013. The incidence of aspergillosis was 50/100,000 person-years in the bronchiectasis cohort and 11/100,000 person-years in the matched cohort (subdistribution hazard ratio, 4.53; 95% confidence interval (CI), 3.25–6.32). Among the bronchiectasis cohort, chronic obstructive pulmonary disease (adjusted HR, 1.95; 95% CI, 1.07–3.57), previous pulmonary tuberculosis (adjusted HR, 3.67; 95% CI, 2.03–6.64), and non-tuberculous mycobacterial pulmonary disease (adjusted HR, 11.25; 95% CI, 1.49–85.18) increased the risk of incident aspergillosis. The incidence of aspergillosis in patients with bronchiectasis was approximately 4.5-fold that in those without bronchiectasis. Comorbid pulmonary diseases—chronic obstructive pulmonary disease, previous pulmonary tuberculosis, and non-tuberculous mycobacterial pulmonary disease—significantly increased the risk of aspergillosis in patients with bronchiectasis. Our study indicates that close monitoring is warranted for aspergillosis in patients with bronchiectasis

    Zn2+ ion doping for structural modulation of lead-free Sn-based perovskite solar cells

    No full text
    Sn-based perovskites have intrinsic defects, such as Sn vacancies, oxidised components (Sn4+), and local lattice strain in the perovskite crystalline structure. In this study, Zn metal powder (Zn-0) was introduced to reduce Sn oxidation in the solution step based on the redox potential difference. Additionally, Zn2+ was introduced in the perovskite precursor, which decreased the intrinsic defects and lattice strain of the perovskite films. The diffusion length, particularly that of the hole, increased with a reduction in the lattice strain, and Zn doping led to interfacial energy-level alignment of the perovskite and hole-transporting layers. The reduced lattice strain decreased the defect density and charge carrier recombination of perovskite devices. The power conversion efficiency of the Zn-doped Sn-based perovskite solar cell was improved to 11.39% compared to the 8.56% of the reference device
    corecore