7 research outputs found

    wild_caught_combo_Degrade

    Full text link
    id: Unique specimen identifier || species: species name of sample || wing: wingwear score || spermats: the number of observed spermatophores. 'Degraded' means that female was mated but the spermatophore(s?) had completely degraded and could not be reliably counted. || degrade: the spermatophore degradation score || matesys: the mating system/clade to which the species/specimen belongs

    Additional file 1: of The genomic features of parasitism, Polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum

    Full text link
    Figure S1. Flow cytometry estimation of the genome size for the M. cingulum. Figure S2. The distribution of 17-mer frequency in M. cingulum genome sequencing reads. Figure S3. Distribution of GC content, CpG Obs/ExpRatios of M. cingulum(Mcin), N. vitripennis(Nvit) and A. mellifera(Amel). Figure S4. COG function classification of the OGS in M. cingulum. Figure S5. KEGG pathway analysis of the OGS in M. cingulum. Figure S6. GO classification of the OGS in M. cingulum. Figure S7. Venn diagram of the homologous protein-coding genes among three wasps (M. cingulum, C. solmsi, N. vitripennis) and fruit fly (D. melanogaster). Figure S8. Phylogenetic relationship of CSP proteins from A. mellifera, C. floridanum, C. solmsi, M. cingulum, N.vitripennis, S.invicta. Figure S9. Phylogenetic relationship of GR proteins from A. mellifera, C. floridanum, C. solmsi, M. cingulum, N.vitripennis, S.invicta. Figure S10. Phylogenetic relationship of IR proteins from A. mellifera, C. floridanum, C. solmsi, M. cingulum, N.vitripennis, S.invicta. Figure S11. Phylogenetic relationship of OR proteins from C. floridanum, D. melanogaster and M. cingulum. Figure S12. Phylogenetic relationship of OBP proteins from A. mellifera, C. floridanum, C. solmsi, M. cingulum, N.vitripennis, S.invicta. Figure S13. Phylogenetic relationship of SNMP proteins from A.mellifera, C. floridanum, C. solmsi, M. cingulum, N.vitripennis, S.invicta. Figure S14. Phylogenetic relationship of GST proteins from A. mellifera, C. floridanum, C. solmsi, M. cingulum, N.vitripennis, S.invicta. Figure S15. Phylogenetic relationship of P450 proteins from N. vitripennis, D. melanogaster and M. cingulum. Figure S16. Phylogenetic relationship of ABC proteins from M. cingulum and D. melanogaster. Figure S17. Different expression levels of miR-14b in different developmental stages of M. cingulum.Table S1. Genome sequencing data of M. cingulum. Table S2. Estimation of M. cingulum genome size using K-mer analysis. Table S3. Summary of the M. cingulum genome assembly. Table S4. The published insect genomes. Table S5. The genome assembly assessment on different insects. Table S6. Classification of repeat sequences identified in the M. cingulum genome. Table S7. Genome features of the M. cingulum, N. vitripennis and A. mellifera. Table S8. Gene features of M. cingulum, N. vitripennis and A. mellifera. Table S9. The insects with OGSs in InsectBase. Table S10. Hemomucin genes in eight wasps. Table S11. The different gene expression of embryo and pseudogerm transcriptomes in KEGG pathway. Table S12. The differently expressed miRNAs in embryo and mixed embryo transcriptomes. Table S13. Comparison of gene numbers for chemoreception in A.mellifera, C. floridanum, C. solmsi, M. cingulum, N. vitripennis and S. invicta. Table S14. Comparison of gene numbers for Gene families associated with insecticide resistance and detoxification in D. melanogaster, A. mellifera, C. floridanum, C. solmsi, M. cingulum, N. vitripennis and S. invicta. Table S15. Comparison of gene numbers of insect immune in A. mellifera, C. floridanum, C. solmsi, M. cingulum, N. vitripennis and S. invicta. Table S16. The PCR primer for target genes of mci-miR-14b. (PDF 6076 kb

    Family trees depicting transmission of 15q11.2-q13.3 duplications and neuropsychiatric phenotypes.

    Full text link
    <p>Red fill indicates maternal duplications, blue indicates paternal duplications, and grey indicates no duplications. Samples where no DNA was available have no fill. Where DNA samples were available, parent of origin was determined using methylation-sensitive high-resolution melt curve analysis, or methylation-sensitive Southern Blot. Neuropsychiatric phenotype (detailed in <a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005993#pgen.1005993.s004" target="_blank">S1 Table</a>) is indicated as follows: SZ—schizophrenia; SZA—schizoaffective; DD—developmental delay; UA—unaffected. In addition, one individual was reported to have epilepsy and another ADHD.</p

    CNVs on chromosome 15.

    Full text link
    <p>The image depicts the region on chromosome 15 that is affected by deletions and duplications caused by a number of low copy repeats. These form five recognised breakpoints (BPs) which cause the formation of deletions and duplications of different sizes. Several of them result in recognised syndromes: PWS/AS, 15q11.2 deletion and 15q13.3 deletion and duplication. The black bars at the top show the positions of the SZ/SZA probands in the current study (<a href="http://www.plosgenetics.org/article/info:doi/10.1371/journal.pgen.1005993#pgen.1005993.s004" target="_blank">S1 Table</a>). All four combinations of duplications between BP1 and BP4 are represented. They all intersect the regions of maternally and paternally expressed genes and the GABA receptors gene cluster.</p
    corecore