4,136 research outputs found
Collective behavior of heterogeneous neural networks
We investigate a network of integrate-and-fire neurons characterized by a
distribution of spiking frequencies. Upon increasing the coupling strength, the
model exhibits a transition from an asynchronous regime to a nontrivial
collective behavior. At variance with the Kuramoto model, (i) the macroscopic
dynamics is irregular even in the thermodynamic limit, and (ii) the microscopic
(single-neuron) evolution is linearly stable.Comment: 4 pages, 5 figure
Optical properties of self-organized wurtzite InN/GaN quantum dots: A combined atomistic tight-binding and full configuration interaction calculation
In this work we investigate the electronic and optical properties of
self-assembled InN/GaN quantum dots. The one-particle states of the
low-dimensional heterostructures are provided by a tight-binding model that
fully includes the wurtzite crystal structure on an atomistic level. Optical
dipole and Coulomb matrix elements are calculated from these one-particle wave
functions and serve as an input for full configuration interaction
calculations. We present multi-exciton emission spectra and discuss in detail
how Coulomb correlations and oscillator strengths are changed by the
piezoelectric fields present in the structure. Vanishing exciton and biexciton
ground state emission for small lens-shaped dots is predicted.Comment: 3 pages, 2 figure
HE 0047-1756: A new gravitationally lensed double QSO
The quasar HE 0047-1756, at z=1.67, is found to be split into two images
1.44" apart by an intervening galaxy acting as a gravitational lens. The flux
ratio for the two components is roughly 3.5:1, depending slightly upon
wavelength. The lensing galaxy is seen on images obtained at 800 nm and 2.1
\mu; there is also a nearby faint object which may be responsible for some
shear. The spectra of the two quasar images are nearly identical, but the
emission line ratio between the two components scale differently from the
continuum. Moreover, the fainter component has a bluer continuum slope than the
brighter one. We argue that these small differences are probably due to
microlensing. There are hints of an Einstein ring emanating from the brighter
image toward the fainter one.Comment: 4 pages, submitted to A&A Letter
Correlated Photon-Pair Emission from a Charged Single Quantum Dot
The optical creation and recombination of charged biexciton and trion
complexes in an (In,Ga)As/GaAs quantum dot is investigated by
micro-photoluminescence spectroscopy. Photon cross-correlation measurements
demonstrate the temporally correlated decay of charged biexciton and trion
states. Our calculations provide strong evidence for radiative decay from the
excited trion state which allows for a deeper insight into the spin
configurations and their dynamics in these systems.Comment: 5 pages, 3 figures, submitted for publicatio
Systematic study of carrier correlations in the electron-hole recombination dynamics of quantum dots
The ground state carrier dynamics in self-assembled (In,Ga)As/GaAs quantum
dots has been studied using time-resolved photoluminescence and transmission.
By varying the dot design with respect to confinement and doping, the dynamics
is shown to follow in general a non-exponential decay. Only for specific
conditions in regard to optical excitation and carrier population, for example,
the decay can be well described by a mono-exponential form. For resonant
excitation of the ground state transition a strong shortening of the
luminescence decay time is observed as compared to the non-resonant case. The
results are consistent with a microscopic theory that accounts for deviations
from a simple two-level picture.Comment: 8 pages, 7 figure
- …